3D Bioplotter Research Papers

Displaying 10 latest papers (490 papers in the database)

3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion

Advanced Materials 2021 Volume 33, Issue 42, Article 2102661

Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites…

Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration

ACS Omega 2021 Volume 6, Issue 33, Pages 21368–21383

The current study introduces two novel, smart polymer three-dimensional (3D)-printable interpenetrating polymer network (IPN) hydrogel biomaterials with favorable chemical, mechanical, and morphological properties for potential applications in traumatic brain injury (TBI) such as potentially assisting in the restoration of neurological function through closure of the wound deficit and neural tissue regeneration. Additionally, removal of injury matter to allow for the appropriate scaffold grafting may assist in providing a TBI treatment. Furthermore, due to the 3D printability of the IPN biomaterials, complex structures can be designed and fabricated to mimic the native shape and structure of the injury sight, which can…

3D ink-printed, sintered porous silicon scaffolds for battery applications

Journal of Power Sources 2021 Volume 507, Article 230298

The fabrication of 3D ink-printed and sintered porous Si scaffolds as electrode material for lithium-ion batteries is explored. A hierarchically-porous architecture consisting of channels (~220 μm in diameter) between microporous Si struts is created to accommodate the large volume change from Si (de)lithiation during electrochemical (dis)charging. The influence of sintering parameters on Si strut porosity and the resulting mechanical and electrochemical properties of the scaffolds are studied experimentally and computationally. Varying sintering temperatures (1150–1300 °C) and sintering times (1–16 h) the open porosity within the Si filaments can be tailored between 46 and 60%. Pore size (3–6 μm) and wall…

Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts

Bioprinting 2021 Volume 24, Article e00163

Although allogeneic islet transplantation has been proposed as a therapy for type 1 diabetes, its success rate remains low. Disruption of both extracellular matrix (ECM) and dense vascular network during islets isolation are referred to as some of the main causes of their poor engraftment. Therefore, the recapitulation of the native pancreatic microenvironment and its prompt revascularization should be beneficial for long-term islet survival. In this study, we developed novel bioinks suitable for the microfluidic-assisted multi-material biofabrication of 3D porous pancreatic and vascular structures. The tissue-specific bioactivity was introduced by blending alginate either with pancreatic decellularized extracellular matrix powder (A_ECM)…

Novel Perspectives in Non-Invasive Diagnosis of Ailments through Analysis of Mechanical Wave Motion

Doctoral Thesis 2021 University of Illinois at Chicago
H. Palnitkar

The central theme of this dissertation is the observation that mechanical waves propagate and scatter at different velocities in biological tissues due to a difference in local material properties (such as viscosity and stiffness), due to the presence of inhomogeneities such as a blood vessel, an axon or a muscle filament. These scattered waves contain information about the characteristic stiffness, viscosity and the mechanical property inhomogeneity of the tissues through which they propagate; this information can aid in non-invasive diagnosis of disease and injury using novel quantitative techniques such as Insonification, Percussion and 1-Norm using Magnetic Resonance Elastography (MRE). The…

Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation

Bioactive Materials 2022 Volume 9, Pages 491-507

The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…

Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds

Tissue Engineering Constructs and Cell Substrates 2021 Volume 32, Article number: 94

Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during…

Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications

Journal of Functional Biomaterials 2021 Volume 12, Issue 3, Article: 45

Three-dimensional (3D) bioprinting is an emerging fabrication technique to create 3D constructs with living cells. Notably, bioprinting bioinks are limited due to the mechanical weakness of natural biomaterials and the low bioactivity of synthetic peers. This paper presents the development of a natural bioink from chicken eggwhite and sodium alginate for bioprinting cell-laden patches to be used in endothelialized tissue engineering applications. Eggwhite was utilized for enhanced biological properties, while sodium alginate was used to improve bioink printability. The rheological properties of bioinks with varying amounts of sodium alginate were examined with the results illustrating that 2.0–3.0% (w/v) sodium alginate…

Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

Science Advances 2021 Volume 7, Issue 34, Article eabi9119

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our…

The effect of enhanced bone marrow in conjunction with 3D-printed PLA-HA in the repair of critical-sized bone defects in a rabbit model

Annals of Translational Medicine 2021 Volume 9, Issue 14, Article: 1134

Background: Traditionally, the iliac crest has been the most common harvesting site for autologous bone grafts; however, it has some limitations, including poor bone availability and donor-site morbidity. This study sought to explore the effect of enhanced bone marrow (eBM) in conjunction with three-dimensional (3D)-printed polylactide–hydroxyapatite (PLA-HA) scaffolds in the repair of critical-sized bone defects in a rabbit model. Methods: First, 3D-printed PLA-HA scaffolds were fabricated and evaluated using micro-computed tomography (µCT) and scanning electron microscopy (SEM). Twenty-seven New Zealand white rabbits were randomly divided into 3 groups (n=9 per group), and the defects were treated using 3D-printed PLA-HA scaffolds…