Detecting hydrogen peroxide (H2O2) as the side product of enzymatic reactions is of great interest in food and medical applications. Despite the advances in this field, the majority of reported H2O2 sensors are bulky, expensive, limited to only one phase detection (either gas or liquid), and require multistep fabrications. This article aims to address some of these limitations by presenting a 3D printable paper-based sensor made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) decorated with horseradish peroxidase, an enzyme able to interact with H2O2. Unlike most electrochemical PEDOT:PSS-based H2O2 sensors with voltametric or potentiometric mechanisms, the sensing mechanism in this technology is impedimetric, significantly…
The costs associated with the treatment of medical device and surgical site infections are a major cause of concern in the global healthcare system. To prevent transmission of such infections, a prophylactic surface system that provides protracted release of antibacterial silver ions using low intensity direct electric current (LIDC; 28 μA system current at 6 V) activation has been recently developed. To ensure the safety for future in vivo studies and potential clinical applications, this study assessed the biocompatibility of the LIDC-activated interdigitated silver electrodes-based surface system; in vitro toxicity to human epidermal keratinocytes, human dermal fibroblasts, and normal human…