3D Bioplotter Research Papers

Displaying all papers by A. Cioncolini (4 results)

Experiments on Flexible Filaments in Air Flow for Aeroelasticity and Fluid-Structure Interaction Models Validation

Fluids 2020 Volume 5, Issue 2, Article 90

Several problems in science and engineering are characterized by the interaction between fluid flows and deformable structures. Due to their complex and multidisciplinary nature, these problems cannot normally be solved analytically and experiments are frequently of limited scope, so that numerical simulations represent the main analysis tool. Key to the advancement of numerical methods is the availability of experimental test cases for validation. This paper presents results of an experiment specifically designed for the validation of numerical methods for aeroelasticity and fluid-structure interaction problems. Flexible filaments of rectangular cross-section and various lengths were exposed to air flow of moderate Reynolds…

Modulation of flexible filaments dynamics due to attachment angle relative to the flow

Experimental Thermal and Fluid Science 2019 Volume 102, Pages 232-244

This paper describes experiments carried out in a wind tunnel with three flexible silicone filaments (length to diameter ratio L/D = 50, 100, 150) hanging in crossflow in the range of reduced velocities of 7 < U* < 150 and at various attachment angles (0 ≤ α ≤ 90°) with respect to the flow direction. At low reduced velocities, due to the negligible bending stiffness, the filaments were statically reconfigured but remained mostly rectilinear along their lengths, except for the relatively small bent portion of the filaments close to the upstream fixed end. As the reduced velocity was further increased the filaments started vibrating, but in...

Flow-induced motions of flexible filaments hanging in cross-flow

Experimental Thermal and Fluid Science 2018 Volume 97, Pages 254-269

Experiments were carried out to study the dynamics of hanging cantilever flexible filaments in air cross-flow. Thirteen flexible filaments of 0.61 mm diameter and lengths from 20 mm to 60 mm were tested with wind speeds in the range of 1–15 m/s, corresponding to Reynolds numbers of 25 

Determination of the normal fluid load on inclined cylinders from optical measurements of the reconfiguration of flexible filaments in flow

Journal of Fluids and Structures 2018 Volume 76, Pages 488-505

Reconfigured flexible filaments exposed to steady fluid load were investigated using a novel non-contact optical technique to measure the normal fluid force due to the fluid loading on inclined cylinders for Reynolds numbers from 25 to 460: a range not covered in previous studies that is of relevance in drag reduction and energy harvesting applications. The ranges of the buoyancy number and the Cauchy number covered in the tests were 3.6 × 10^4 ≤ B ≤ 2.1 × 10^6 and 7.6 × 10^4 ≤ Ca ≤ 1.4 × 10^7. These newly generated data were then used to assess and extend…