Soft robots and actuators are emerging devices providing more capabilities in the field of robotics. More flexibility and compliance attributing to soft functional materials used in the fabrication of these devices make them ideal for delivering delicate tasks in fragile environments, such as food and biomedical sectors. Yet, the intuitive nonlinearity of soft functional materials and their anisotropic actuation in compliant mechanisms constitute an existent challenge in improving their performance. Topology optimization (TO) along with four-dimensional (4D) printing is a powerful digital tool that can be used to obtain optimal internal architectures for the efficient performance of porous soft actuators….
Dynamic hydrogels are prepared by either dynamic covalent bonds or supramolecular chemistry. Herein, we develop a dynamic hydrogel by combining both dynamic covalent bonds and supramolecular chemistry that exhibits environmentally adaptive self-healing and pH-tuning properties. To do so, we prepared a gelatin–nanopolysaccharide mixed hydrogel containing pyrogallol/catechol groups and trivalent metal ions. The as-prepared hydrogels are able to heal damage inflicted on them under acidic (pH 3 and 6), neutral (pH 7), and basic (pH 9) environments. The mechanism of healing at acidic and neutral pHs is dominated by coordination bonds between pyrogallol/catechol groups of tannic acid and ferric ions, whilst…
High stretchability and mechanical stability are the key properties of a conductive polymer composite structure. In this work, an anisotropic composite is fabricated by wet 3D printing of epoxy crosslinked chitosan/carbon microtubes. The carbon microtubes were synthesized through a high temperature carbonization of chemically purified cellulose fibres. After the chemical treatment and high temperature carbonization, the removal amorphous substrates from the core of cotton fibres results in the formation of a tubular structure. Here, chitosan which is an abundant natural polymer was used as the composite matrix. It was found that the epoxy crosslinking increases the stretchability of composite filaments.
Current three-dimensional (3D) printing allows for the fabrication of controllable 3D printed soft actuators with growing applications in soft robotics, like cell manipulation and drug delivery. Therefore, a precise and computationally efficient control algorithm for robust trajectory tracking of the 3D printed soft actuators has become important. The results of the primary model of the soft actuator deviated from experimental results due to uncertainties such as time-varying characteristics of the actuator. Hence, a second-order type nonsingular terminal sliding mode controller (NTSMC) for robust stabilization and trajectory tracking of the 3D printed actuator is proposed. It is shown via experiments that…
Over the last decays, the use of conductive biopolymer composites has been growing in areas such as biosensors, soft robotics, and wound dressing applications. They are generally soft hydrophilic materials with good elastic recovery and compatible with biological environments. However, their application and removal from the host are still challenging mainly due to poor mechanical strength. This work displays a technique for the fabrication of complex‐shaped conductive structures with improved mechanical strength by wet three‐dimensional (3‐D) printing, which uses a coagulation bath to quickly solidify an epoxy cross‐linked chitosan/carbon microtube composite ink. The fabricated conductive structure demonstrated higher elongation strength…
Introduction of 3-dimensional (3D) printing in fabrication and increasing applications of intriguing products in soft robotics have led to studies on controllable 3D printed soft actuators. Therefore, a demand for a precise and computationally efficient model for bending control of the 3D printed soft actuators has arisen. This study initially used a grey box strategy for dynamic modeling of a 3D printed soft actuator which undergoes large bending deformations. Yet, the primary model estimated results deviated from experimental results due to uncertainties such as hysteresis and time varying characteristics of the soft actuator in presence of electric field. Thus, a…
This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also…
With increasing utilization of robots in daily tasks, especially in biomedical and environmental monitoring applications, there would be demands for soft, biodegradable, or even edible actuators that provide more versatility than conventional rigid materials (e.g., metals and plastics). Polyelectrolyte hydrogels produce mechanical motion in response to electrical stimulus, making them good candidates for implementation of soft actuators. However, their conventional fabrication process has so far hindered their applicability in a broad range of controlled folding behaviors. A novel application of 3D printing in biodegradable and biocompatible soft robots is presented in this study. It is observed that the contactless electroactive…
Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography,…
Polyelectrolyte hydrogels produce mechanical motion in response to electrical stimulus making them a good candidate for implementation of soft actuators. However, their customary fabrication process has thus far hindered their applicability in a broad range of controlled folding behaviours. This paper employs the 3D printing technology does the development of polyelectrolyte hydrogel soft actuators. A 3D printed soft hydrogel actuator with contactless electrodes is presented for the first time. Initially chitosan as a candidate of polyelectrolytes which possess both printability and stimuli responsive is opted for ink preparation of 3D printing. The printing parameters are optimised for fabrication of desired…
3D printing technology is driving innovation in a wide variety of disciplines, and is beginning to make inroads into the fields of medicine and biology. In particular, 3D printing is being increasingly utilized for the design and fabrication of three-dimensional cell culture scaffolds. This technology allows for scaffolds to be produced rapidly while maintaining a great deal of control over the matrix architecture. This paper presents an effective technique for rapidly designing and fabricating scaffolds from silicone rubber and polycaprolactone (PCL), appropriate for primary human cardiomyocyte cell cultures. Additionally, a stimulation device is developed and presented which can provide 6…
Dysphagia affects many people worldwide. Modifying foods to standard consistencies, and manual design and assembly of foods for the daily requirements of people with dysphagia is challenging. People with dysphagia may develop a dislike for pureed foods due to the unattractiveness of the appearance of the foods, the lack of variety in daily meals, and the diluted taste of meals. Three-dimensional (3D) food printing is emerging as a method for making foods for people with special mealtime needs. Very few efforts have been made to apply 3D food printing to improving the lives of people with special mealtime needs such…
The demand for rapid and accurate fabrication of light-weight, biocompatible, and soft actuators in soft robotics has perused researchers to design and fabricate such products by rapid manufacturing techniques. The self-folding origami structure is a type of soft actuator that has applications in micro electro mechanical systems, soft electronics, and biomedical devices. 3-dimentional (3D) printing is a current manufacturing process that can be used for fabrication of involute soft self-folding products by means of shape memory polymer materials. This paper presents, for the first time, a method for developing a photo thermal self-folding soft actuator using a 3D bioplotter. Easily…
A variety of different approaches have been employed to enable implantation of electronic medical microdevices. A novel method of producing low-cost, rapidly fabricated implantable enclosures from biocompatible silicone is presented in this paper. This method utilises 3D computer-aided design software to design and model the enclosures prior to fabrication. The enclosures are then fabricated through additive manufacturing from biocompatible silicone using a 3D bioprinter. In this paper, four different implantable enclosure designs are presented. A prototyping stage with three different prototypes is described, these prototype enclosures are then evaluated through submersion and operation tests. A final design is developed in…
This paper discusses design and fabrication processes in the development of a wearable and flexible conductive resistive sensor. The design and development of the sensor involve the use of Sn-Ag-Cu (SAC)plated Nylon fabric, precisionfused deposition modeling(FDM) using silicone and petrolatum for etch-resistant masks using the EnvisionTEC GmbH Bioplotter, and wet etching using Chromium, Ammonium Persulphate, and Salt-Vinegar etching solutions. Preliminary testing with other mask types, development processes, and sensor design approaches for various applications are discussed.
A number of methods have been used to make electronic medical microdevices biocompatible. This paper presents a novel approach for design and fabrication of biocompatible silicone enclosures for implantable medical microdevices. The approach involves design and formation of a 3D model of the enclosure using a computer-aided design software tool, followed by 3D printing of the enclosures using a bioplotter. Three different implantable enclosure designs are presented. The fabrication of the three enclosures is given. An evaluation of the suitability of the enclosures for implantation of a deep brain stimulation microdevice is discussed through submersion and operation tests. The evaluation…