Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]n H2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA…
A facile one-step printing process by 3D micro-extrusion affording binder-free thermally reduced graphene oxide (TRGO) based electrochemical capacitors (ECs) that display high-rate performance is presented. Key intermediates are binder-free TRGO dispersion printing inks with concentrations up to 15 g L−1. This versatile printing technique enables easy fabrication of EC electrodes, useful in both aqueous and non-aqueous electrolyte systems. The as-prepared TRGO material with high specific surface area (SSA) of 593 m2 g−1 and good electrical conductivity of ≈16 S cm−1 exhibits impressive charge storage performances. At 100 and 120 Hz, ECs fabricated with TRGO show time constants of 2.5 ms…