In tissue engineering, biomaterials have been used to steer the host response. This determines the outcome of tissue regeneration, which is modulated by multiple growth factors (GFs). Hence, a sustainable delivery system for GFs is necessary to control tissue regeneration actively. A delivery technique of single and multiple GF combinations, using a layer‐by‐layer (LBL) procedure to improve tissue remodeling, is developed. TGF‐β1, PDGF‐ββ, and IGF‐1 are incorporated on tailor‐made polymeric rods, which could be used as a tool for potential tissue engineering applications, such as templates to induce the formation of in situ tissue engineered blood vessels (TEBVs). Cell response…
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials’ surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β,…