The central theme of this dissertation is the observation that mechanical waves propagate and scatter at different velocities in biological tissues due to a difference in local material properties (such as viscosity and stiffness), due to the presence of inhomogeneities such as a blood vessel, an axon or a muscle filament. These scattered waves contain information about the characteristic stiffness, viscosity and the mechanical property inhomogeneity of the tissues through which they propagate; this information can aid in non-invasive diagnosis of disease and injury using novel quantitative techniques such as Insonification, Percussion and 1-Norm using Magnetic Resonance Elastography (MRE). The…
Soft biological tissues such as skeletal muscle and brain white matter can be inhomogeneous and anisotropic due to the presence of fibers. Unlike biological tissue, phantoms with known microstructure and defined mechanical properties enable a quantitative assessment and systematic investigation of the influence of inhomogeneities on the nature of shear wave propagation. This study introduces a mathematical measure for the wave shape, which the authors call as the 1-Norm, to determine the conditions under which homogenization may be a valid approach. This is achieved through experimentation using the Magnetic Resonance Elastography technique on 3D printed inhomogeneous fiber phantoms as well…