The demand for rapid and accurate fabrication of light-weight, biocompatible, and soft actuators in soft robotics has perused researchers to design and fabricate such products by rapid manufacturing techniques. The self-folding origami structure is a type of soft actuator that has applications in micro electro mechanical systems, soft electronics, and biomedical devices. 3-dimentional (3D) printing is a current manufacturing process that can be used for fabrication of involute soft self-folding products by means of shape memory polymer materials. This paper presents, for the first time, a method for developing a photo thermal self-folding soft actuator using a 3D bioplotter. Easily…
This paper discusses design and fabrication processes in the development of a wearable and flexible conductive resistive sensor. The design and development of the sensor involve the use of Sn-Ag-Cu (SAC)plated Nylon fabric, precisionfused deposition modeling(FDM) using silicone and petrolatum for etch-resistant masks using the EnvisionTEC GmbH Bioplotter, and wet etching using Chromium, Ammonium Persulphate, and Salt-Vinegar etching solutions. Preliminary testing with other mask types, development processes, and sensor design approaches for various applications are discussed.