3D Bioplotter Research Papers

Displaying all papers by J. E. Trachtenberg (2 results)

3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution

Biofabrication 2017 Volume 9, Number 2, Article 024101

In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients….

PLGA

Effects of shear stress gradients on Ewing sarcoma cells using 3D printed scaffolds and flow perfusion

ACS Biomaterials Science and Engineering 2017 Volume 4, Issue 2, Pages 347–356

In this work, we combined three-dimensional (3D) scaffolds with flow perfusion bioreactors to evaluate the gradient effects of scaffold architecture and mechanical stimulation, respectively, on tumor cell phenotype. As cancer biologists elucidate the relevance of 3D in vitro tumor models within the drug discovery pipeline, it has become more compelling to model the tumor microenvironment and its impact on tumor cells. In particular, permeability gradients within solid tumors are inherently complex and difficult to accurately model in vitro. However, 3D printing can be used to design scaffolds with complex architecture, and flow perfusion can simulate mechanical stimulation within the tumor…