Here, a hybrid process for the fabrication of dehydrofluorinated PVDF (dPVDF) microfiltration (MF) membranes is presented. dPVDF was fabricated through the bulk modification of PVDF using ethylenediamine. To produce inks for direct ink writing (DIW), the dPVDF was dissolved in N,N-dimethyacetamide along with a pore-forming agent, poly(vinyl pyrrolidone) (PVP) (5–30 wt%, relative to dPVDF concentration). Membranes were produced by direct ink writing of the inks into continuous films – followed by non-solvent induced phase separation (NIPS). Attenuated total reflectance – Fourier transform infrared (ATR-FTIR) and Raman spectroscopies confirmed alkene moieties within the dPVDF polymer, resulting from the dehydrofluorination process. The…
Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti3C2Tx MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting…