This work investigated a new 3D-printing methodology to prepare porous scaffolds containing horizontal pore and composition gradients. To achieve that, a multimaterial printing technology developed in our laboratory was adapted to incorporate pore gradients. Fibers were printed by welding segments with unique material compositions and fiber diameters. Particularly, we focused on the preparation of model composite poly(ε-caprolactone)-based scaffolds with radial gradients of particulate hydroxyapatite (HA) content (higher concentrations in the outer region of the scaffold) and porosity (higher in the inner region). The morphology of the scaffolds revealed that the methodology allowed the fabrication of discrete regions with compressive mechanical…
In this work, we present a printing method to fabricate scaffolds consisting of multimaterial segmented fibers. Particularly, we developed a reproducible printing process to create single fibers with multiple discrete compositions and control over the distribution of particulate ceramics—namely hydroxyapatite (HA) and β-tricalcium phosphate (TCP)—within poly(ɛ-caprolactone)-based composite scaffolds. Tensile testing revealed that the mechanical integrity of individual segmented fibers was preserved compared with nonsegmented fibers, and microcomputed tomography and thermal analysis confirmed the homogeneous distribution of ceramics incorporated in the fiber compositions. Moreover, we printed and characterized composite scaffolds containing model inverse radial gradients of HA and TCP that could…