The presence and progression of neuromuscular pathology, including spasticity, Duchenne’s muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance…
Background: The presence and progression of neuromuscular pathologies, including spasticity, dystrophy and hyperthyroidism, have been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools of noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. While various approaches have been proposed in the literature [1,2], there is not yet an accepted standard for the identification of the mechanical properties of anisotropic and viscoelastic tissues through MRE; advances in…