The long-term in vitro culture and differentiation of human pancreatic islets is still hindered by the inability to emulate a suitable microenvironment mimicking physiological extracellular matrix (ECM) support and nutrient/oxygen perfusion. This is further amplified by the current lack of a non-invasive and rapid monitoring system to readily evaluate cellular processes. In this study, we realized a viable method for non-invasively monitoring isolated human pancreatic islets in vitro. Islets are induced to dedifferentiate into proliferative duct-like structures (DLS) in preparation for potential and subsequent re-differentiation into functional islet-like structures (ILS) in a process reminiscent of islet regeneration strategies. This long-term…