Reconstruction of bone defects in the field of craniomaxillofacial surgery is a relevant problem. In regenerative medicine, autologous bone is not available sufficiently. The full replacement of autologous bone grafts is required. A promising research field is the bone engineering. Especially the application of rapid prototyping (RP) enables new perspectives concerning the scaffold design. The aim of the study was to compare scaffolds produced by RP-technology (native and plasma-coated PLGA-scaffolds) with conventionally produced scaffolds (agar plates with hydroxyapatite and hyaluronic acid coated agar plates with hydroxyapatite) relating to proliferation, adhesion, and morphology of osteoblasts to get knowledge about the application…
In Tissue Engineering and bone reconstruction, alongside the choice of materials, the scaffold design is of great importance. Three dimensional structures not only permit the tuning of chemical and mechanical properties, but they can also copy the outer form of the required bone or cartilaginous structures. While new processes that create such 3D scaffolds by means of Rapid Prototyping have been developed, they are still restricted to a limited type of materials. At the Freiburger Materialforschungszentrum, our group has developed a new process called 3D BioplottingTM. Most kinds of polymers and biopolymers can be used for the fabrication of 3D…
Two important rapid-prototyping technologies (3D Printing and 3D Bioplotting) were compared with respect to the computer-aided design and free-form fabrication of biodegradable polyurethane scaffolds meeting the demands of tissue-engineering applications. Aliphatic polyurethanes were based on lysine ethyl ester diisocyanate and isophorone diisocyanate. Layer-by-layer construction of the scaffolds was performed by 3D Printing, that is, bonding together starch particles followed by infiltration and partial crosslinking of starch with lysine ethyl ester diisocyanate. Alternatively, the 3D Bioplotting process permitted three-dimensional dispensing and reactive processing of oligoetherurethanes derived from isophorone diisocyanate, oligoethylene oxide, and glycerol. The scaffolds were characterized with X-ray microtomography, scanning…
Scaffolds are of great importance for tissue engineering because they enable the production of functional living implants out of cells obtained from cell culture. These scaffolds require individual external shape and well defined internal structure with interconnected porosity. The problem of the fabrication of prototypes from computer assisted design (CAD) data is well known in automotive industry. Rapid prototyping (RP) techniques are able to produce such parts. Some RP techniques exist for hard tissue implants. Soft tissue scaffolds need a hydrogel material. No biofunctional and cell compatible processing for hydrogels exists in the area of RP. Therefore, a new rapid…
In the year 2000 a new rapid prototyping (RP) technology was developed at the Freiburg Materials Research Center to meet the demands for desktop fabrication of scaffolds useful in tissue engineering. A key feature of this RP technology is the three-dimensional (3D) dispensing of liquids and pastes in liquid media. In contrast to conventional RP systems, mainly focused on melt processing, the 3D dispensing RP process (3D plotting) can apply a much larger variety of synthetic as well as natural materials, including aqueous solutions and pastes, to fabricate scaffolds for application in tissue engineering. For the first time, hydrogel scaffolds…