3D Bioplotter Research Papers

Displaying all papers by V. Hasirci (5 results)

Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells

Journal of Tissue Engineering and Regenerative Medicine 2013 Volume 9, Issue 8, Pages 930–942

The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue…

An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects

Journal of Tissue Engineering and Regenerative Medicine 2013 Volume 7, Issue 9, Pages 687–696

The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with…

A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects

Biomedical Materials 2013 Volume 8, Number 4, 045009

The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are…

Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration

Journal of Materials Science: Materials in Medicine 2010 Volume 21, Issue 11, Pages 2999-3008

The aim of this study was to develop 3-D tissue engineered constructs that mimic the in vivo conditions through a self-contained growth factor delivery system. A set of nanoparticles providing the release of BMP-2 initially followed by the release of BMP-7 were incorporated in poly(ε-caprolactone) scaffolds with different 3-D architectures produced by 3-D plotting and wet spinning. The release patterns were: each growth factor alone, simultaneous, and sequential. The orientation of the fibers did not have a significant effect on the kinetics of release of the model protein BSA; but affected proliferation of bone marrow mesenchymal stem cells. Cell proliferation…

3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering

Macromolecular Symposia 2008 Volume 269, Issue 1, Pages 92-99

The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study, RP was used for the production of poly(ε-caprolactone) (PCL) scaffolds….