The direct use of graphene for potential thermoelectric material requires the opening of its bandgap without loss of its high electric conductivity. We herein demonstrate a synchronous reduction and assembly strategy to fabricate large-area reduced graphene oxide films with high electric conductivity and optimized low thermal conductivity assembly. The reduced graphene oxide films have a high electric conductivity and low thermal conductivity, which results from high longitudinal carrier mobility of the lattice domains as well as the enhanced scattering of phonons in the defects and their boundary that substantially reduces the mean phonon free path and the thermal conductivity. Flexible…
Hydrogel bioprinting is a major area of focus in the field of tissue engineering. However, 3D printed hydrogel scaffolds often suffer from low printing accuracy and poor mechanical properties because of their soft nature and tendency to shrink. This makes it challenging to process them into structural materials. In this study, natural chitosan hydrogel scaffolds were, for the first time, reinforced with milled silk particles and fabricated by 3D printing. Compared with pure chitosan scaffolds, the addition of silk particles resulted in up to a 5-fold increase in compressive modulus as well as significantly better printing accuracy and improved scaffold…