Liquid deposition modeling (LDM) is an evolving three-dimensional (3D) printing approach that mainly utilizes polymer solutions to enable the fabrication of biomedical scaffolds under mild conditions. A deep understanding of the rheological properties of polymer printing inks and the features of yielded scaffolds are critical for a successful LDM based fabrication of biomedical scaffolds. In this work, polymer printing inks comprised of Poly(epsilon-caprolactone) (PCL), sodium chloride (NaCl), and trichloromethane (CHCl3) were prepared. The rheological properties, including extrudability (shear stress, viscosity, and shear-thinning) and self-supporting ability (viscosity) of all printing inks were analyzed. Then printing performance was evaluated by measuring the…
Increasing demands for optical anticounterfeiting technology require the development of versatile luminescent materials with tunable photoluminescence properties. Herein, a number of fluorescent carbon‐ and oxygen‐doped hexagonal boron nitride (denoted as BCNO) phosphors are found to offer a such high‐tech anticounterfeiting solution. These multicolor BCNO powders, developed in a two‐step process with controlled annealing and oxidation, feature rod‐like particle shape, with varied luminescence properties. Studies of the optical properties of BCNO, along with other characterization, provide insight into this underexplored material. Anticounterfeiting applications are demonstrated with printed patterns which are indistinguishable to the naked eye under visible light but become highly…