Bone scaffold for aiding bone regeneration in large bone defects should have following ideal characteristics; biocompatibility, biodegradability, bio-activity, high porous and interconnected-pore architecture, as well as, mechanical characteristics similar to the cortical bone for supporting loads. 3D printed Sr–HT (Sr–Ca2ZnSi2O7)–gahnite scaffold with hexagonal pore structure is an interesting bone scaffold meeting most of these ideal features. To explain, biocompatible, osteoinductive, and osteoconductive properties as well as unique high compressive strength are obtained from Sr–HT–gahnite, glass-ceramic, material. With hexagonal pore structure, the scaffold has compressive strength comparable to cortical bone balancing with high porosity and large pore size. Nonetheless, the scaffold…
The implementation of tailor-made dosage forms is currently one of the biggest challenges in the health sector. Over the last years, different approaches have been introduced to provide an individual and precise dispensing of the appropriate dose of an active pharmaceutical ingredient (API). A more recent approach, which has been intensively researched in the last years, is 3D-printing of medicines. The aim of this work was to develop printing formulations free of organic solvents for a pressure-assisted microsyringe printing method (PAM), which should also be printable over several days of storage. Furthermore, the printed dosage forms should provide a sustained…