3D bioprinting, a paradigm shift in tissue engineering holds a promising perspective for regenerative medicine and disease modelling. 3D scaffolds are fabricated for subsequent cell seeding or incorporated directly to the bioink to create cell-laden 3D constructs. A plethora of factors relating to bioink properties, printing parameters and post print curing play a significant role in the optimisation of the printing process. Although qualitative evaluation of printability has been investigated largely, there is a paucity of studies on quantitative approaches to assess printability. Hence, this study explores machine learning as a novel tool to evaluate printability quantitatively and to fast…
3D ink-extrusion of powders followed by sintering is an emerging additive manufacturing method capable of creating metallic microlattices. Here, we study the creation of hierarchically porous Fe or Ni scaffolds by 3D extrusion of 0/90° lattices from inks consisting of fine oxide powders (Fe2O3 or NiO, < 3 µm), coarse space-holder particles (CuSO4, < 45 µm) and a polymer binder within a solvent. After space-holder leaching and debinding of the lattices, a sintering step densifies the metallic Fe or Ni powders created by oxide reduction with H2, while maintaining the larger pores templated by the space-holder particles within the printed...
3D printing, an advent from rapid prototyping technology is emerging as a suitable solution for various regenerative engineering applications. In this study, blended gelatin-sodium alginate 3D printed scaffolds with different pore geometries were developed by altering the spatial alignment of even layered struts in the scaffolds. A significant difference in compression modulus and osteogenic expression due to the difference in spatial printing was demonstrated. Pore geometry was found to be more dominant than the compressive modulus of the scaffold in regulating osteogenic gene expression. A shift in pore geometry by at least 45° was critical for significant increase in osteogenic…
Malignant bone tumors have caused great obstacles and serious illnesses for tumor recurrence and difficulty in reconstructing and repairing large defects after tumorectomy. Additionally, long-term efficacy, satisfactory biocompatibility and excellent properties for anti-tumor agents are necessary in the biomedical field. To solve these problems, a novel idea has been proposed on building an integrative anti-tumor/bone repairing scaffold by covering photothermal therapy (PTT) composite MoS2-PLGA film on the surface of borosilicate bioactive glass (BG). In our study, the MoS2-integrated composite BG (BGM) scaffolds can rapidly and effectively elevate temperature, and they exhibited excellent photothermal stability, under 808 nm laser irradiation. Notably,…
Titanium metal matrix composite microlattices are fabricated using 3D ink extrusion printing and sintering. The inks consist of TiH2+TiB2 or TiH2+TiC powder blends to form (i) Ti-TiB composites by dehydrogenation and in situ reaction of Ti + TiB2 to form Ti + TiB and (ii) Ti-TiC composites, where TiC remains stable during the sintering process. Rapid densification of the printed powder blend is achieved during pressureless sintering in vacuum at 1200 °C between 1 and 4 h, due to the small Ti particle size available from dehydrogenation of micron-sized TiH2. Near-full density Ti-TiB and Ti-TiC is achieved within individual lattice…
Cobalt-based superalloy microlattices were created via (i) three-dimensional-extrusion printing of inks containing a suspension of Co-, Ni- and W-oxide particles, (ii) H2-reduction of the oxides and sintering to a homogenous Co-Ni-W alloy, (iii) Al pack-cementation to deposit Al on the microlattice struts, followed by Al-homogenization. The resulting Co-(18–20)Ni-(5–6)W-(10–13)Al (at.%) microlattices, with 27–30% relative density and 350 μm diameter struts, display a peak in yield strength at 750°C, consistent with their γ/γ′ aged microstructure. Oxidation resistance is strongly improved compared to Al-free printed Co-Ni-W lattices, via the formation of an Al2O3 surface layer. However, the resulting Al depletion within the struts…
Researchers have looked to cartilage tissue engineering to address the lack of cartilage regenerative capability related to cartilage disease/trauma. For this, a promising approach is extrusion-based three-dimensional (3D) printing technique to deliver cells, biomaterials, and growth factors within a scaffold to the injured site. This paper evaluates the printability of chitosan scaffolds for a cartilage tissue engineering, with a focus on identifying the influence of drying technique implemented before crosslinking on the improvement of chitosan printability. First, the printability of chitosan with concentrations of 8%, 10%, and 12% (w/v) was evaluated and 10% chitosan was selected for further studies. Then,…
Wounds impact millions of patients every year and represent a serious cause of morbidity and mortality worldwide, yet current treatment outcomes are far from ideal. Therapies based on delivery of multiple growth factors offer a promising approach for optimal wound management; however, their high production cost, low stability, and lack of effective delivery system limits their application in the clinic. Platelet lysate is a suitable, abundant and cost-effective source of growth factors that play an important role in the healing cascade. The aim of this current work is to develop an extrusion-based bioink consisting of platelet lysate (PL) and gelatin…
Liquid deposition modeling (LDM) is an evolving three-dimensional (3D) printing approach that mainly utilizes polymer solutions to enable the fabrication of biomedical scaffolds under mild conditions. A deep understanding of the rheological properties of polymer printing inks and the features of yielded scaffolds are critical for a successful LDM based fabrication of biomedical scaffolds. In this work, polymer printing inks comprised of Poly(epsilon-caprolactone) (PCL), sodium chloride (NaCl), and trichloromethane (CHCl3) were prepared. The rheological properties, including extrudability (shear stress, viscosity, and shear-thinning) and self-supporting ability (viscosity) of all printing inks were analyzed. Then printing performance was evaluated by measuring the…
3D printing of cell laden bioinks has the potential to recapitulate the hierarchical and spatial complexity of native tissues. However, the addition of cells can alter physical properties of printable resins, which in turn may impede or induce cellular sedimentation or affect the printability and shape fidelity of the final construct. In this study we investigated these considerations by bioprinting gelatin methacrylate (GelMA) bioinks, loaded with various concentrations of mouse fibroblast cells (L929), using extrusion-based direct-write 3D printing (EDP). The impact of various cellular concentrations on viscosity, and temperature-driven gelation of GelMA was examined with a rheometer. The effect of…