3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical…
Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a…
The rationale for the use of polymer–ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA–HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars…
In this study, porous 3D fiber deposition titanium (3DFT) and 3DFT combined with porous biphasic calcium phosphate ceramic (3DFT+BCP) implants, both bare and 1 week cultured with autologous bone marrow stromal cells (BMSCs), were implanted intramuscularly and orthotopically in 10 goats. To assess the dynamics of bone formation over time, fluorochrome markers were administered at 3, 6 and 9 weeks and the animals were sacrificed at 12 weeks after implantation. New bone in the implants was investigated by histology and histomorphometry of non-decalcified sections. Intramuscularly, no bone formation was found in any of the 3DFT implants, while a very limited…
3D fiber deposition is a technique that allows the development of metallic scaffolds with accurately controlled pore size, porosity and interconnecting pore size, which in turn permits a more precise investigation of the effect of structural properties on the in vivo behavior of biomaterials. This study analyzed the in vivo performance of titanium alloy scaffolds fabricated using 3D fiber deposition. The titanium alloy scaffolds with different structural properties, such as pore size, porosity and interconnecting pore size were implanted on the decorticated transverse processes of the posterior lumbar spine of 10 goats. Prior to implantation, implant structure and permeability were…