The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…
Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during…
Background: Traditionally, the iliac crest has been the most common harvesting site for autologous bone grafts; however, it has some limitations, including poor bone availability and donor-site morbidity. This study sought to explore the effect of enhanced bone marrow (eBM) in conjunction with three-dimensional (3D)-printed polylactide–hydroxyapatite (PLA-HA) scaffolds in the repair of critical-sized bone defects in a rabbit model. Methods: First, 3D-printed PLA-HA scaffolds were fabricated and evaluated using micro-computed tomography (µCT) and scanning electron microscopy (SEM). Twenty-seven New Zealand white rabbits were randomly divided into 3 groups (n=9 per group), and the defects were treated using 3D-printed PLA-HA scaffolds…
Composites are promising candidates for treating bone defects, but manufacturing of composite scaffolds is challenging. This study aimed to fabricate composite scaffolds based on polycaprolactone (PCL) and doped Hydroxyapatite (HA) via a single step melt extrusion additive manufacturing technique. Starting from the raw powder forms, the printed scaffolds were produced and then characterized for morphology, mechanical behavior and in vitro mineralization. MicroCT revealed the homogenous dispersion of ceramic particles in the PCL matrix. Also, SEM showed the ceramic particles on the surfaces of printed scaffolds. Furthermore, bioactivity assays confirmed the enhanced apatite deposit formation on composite scaffolds compared to PCL…
Bone defects remain a major threat to human health and bone tissue regeneration has become a prominent clinical demand worldwide. The combination of microRNA (miRNA) therapy with 3D printed scaffolds has always posed a challenge. It can mimic physiological bone healing processes, in which a biodegradable scaffold is gradually replaced by neo-tissue, and the sustained release of miRNA plays a vital role in creating an optimal osteogenic microenvironment, thus achieving promising bone repair outcomes. However, the balance between two key factors – scaffold degradation behavior and miRNA release profile – on osteogenesis and bone formation is still poorly understood. Herein,…
Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells’ adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering….
Malignant bone tumors have caused great obstacles and serious illnesses for tumor recurrence and difficulty in reconstructing and repairing large defects after tumorectomy. Additionally, long-term efficacy, satisfactory biocompatibility and excellent properties for anti-tumor agents are necessary in the biomedical field. To solve these problems, a novel idea has been proposed on building an integrative anti-tumor/bone repairing scaffold by covering photothermal therapy (PTT) composite MoS2-PLGA film on the surface of borosilicate bioactive glass (BG). In our study, the MoS2-integrated composite BG (BGM) scaffolds can rapidly and effectively elevate temperature, and they exhibited excellent photothermal stability, under 808 nm laser irradiation. Notably,…
Calcium silicate (CS) composite bone tissue engineering scaffolds were three-dimensionally printed using titanium metallic powders as the second strengthening phase for overcoming the inherent brittleness and fast degradability. In order to promote the sintering process of all composite scaffolds, mesoporous structure was further introduced into sol-gel-derived CS powders obtaining mesoporous CS (MCS) with larger surface area. The influences of mesoporous structure, sintering temperature and Ti content have been investigated through comparisons of the final scaffold composition, microstructure, compressive strength and in vitro stability. Results showed that CS matrix materials reacted with Ti could form less degradable CaTiO3 and TiC ceramic…
Osteochondral repair remains a significant clinical challenge due to the multiple tissue phenotypes and complex biochemical milieu in the osteochondral unit. To repair osteochondral defects, it is necessary to mimic the gradation between bone and cartilage, which requires spatial patterning of multiple tissue-specific cues. To address this need, we have developed a facile system for the conjugation and patterning of tissue-specific peptides by melt extrusion of peptide-functionalized poly(ε-caprolactone) (PCL). In this study, alkyne-terminated PCL was conjugated to tissue-specific peptides via a mild, aqueous, and Ru(II)-catalyzed click reaction. The PCL-peptide composites were then 3D printed by multimaterial segmented printing to generate…
We recently developed a recombinant growth factor-free bone regenerative scaffold composed of stoichiometric hydroxyapatite (HA) ceramic particles and human demineralized bone matrix (DBM) particles (HA-DBM). Here, we performed the first pre-clinical comparative evaluation of HA-DBM relative to the industry standard and established positive control, recombinant human bone morphogenetic protein-2 (rhBMP-2), using a rat posterolateral spinal fusion model (PLF). Female Sprague–Dawley rats underwent bilateral L4-L5 PLF with implantation of the HA-DBM scaffold or rhBMP-2. Fusion was evaluated using radiography and blinded manual palpation, while biomechanical testing quantified the segmental flexion-extension range-of-motion (ROM) and stiffness of the fused segments at 8-weeks postoperatively….
The repair of large bone defects has always been a challenge, especially with respect to regeneration capacity and autogenous bone availability. To address this problem, we fabricated a 3D-printed polylactic acid (PLA) and hydroxyapatite (HA) scaffold (3D-printed PLA-HA, providing scaffold) loaded with enhanced bone marrow (eBM, providing seed cells) combined with induced membrane (IM, providing grow factors) to repair large radial defects in rabbits. in vitro assays, we demonstrated that 3D-printed PLA-HA had excellent biocompatibility, as shown by co-culturing with mesenchymal stem cells (MSCs); eBM-derived MSCs exhibited considerable differentiation potential, as shown in trilineage differentiation assays. To investigate bone formation…
Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell-loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano-hydroxyapatite (na-HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na-HA bioscaffolds were printed using 3D…
This paper reports on the hybrid process we have used for producing hierarchical scaffolds made of poly(lactic-co-glycolic) acid (PLGA) and nanohydroxyapatite (nHA), analyzes their internal structures via scanning electron microscopy, and presents the results of our in vitro proliferation of MC3T3-E1 cells and alkaline phosphatase activity (ALP) for 0 and 21 days. These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Slow cooling at a rate of 1.5 °C/min during the TIPS process was used to enable a uniform temperature throughout the scaffolds, and therefore, a relatively uniform pore size range. We produced ten different…
3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical…
Background It is known that a number of parameters can influence the post-printing properties of bone tissue scaffolds. Previous research has primarily focused on the effect of parameters associated with scaffold design (e.g., scaffold porosity) and specific scaffold printing processes (e.g., printing pressure). To our knowledge, no studies have investigated variations in post-printing properties attributed to the techniques used to synthesize the materials for printing (e.g., melt-blending, powder blending, liquid solvent, and solid solvent). Methods Four material preparation techniques were investigated to determine their influence on scaffold properties. Polycaprolactone/nano-hydroxyapatite 30% (wt.) materials were synthesized through melt-blending, powder blending, liquid solvent,…
Bone related diseases and disorders increasingly impact human health. Electrical stimulation (ES) has been shown to promote osteogenesis and healing of bone defects. Graphene, is an electrically conductive and biocompatible material with good mechanical properties (strength with flexibility), and therefore shows significant promise as a cell-compatible electrode for ES. Graphene-based scaffolds may therefore be used for 3D cell and tissue support, including 3D osteoinduction. We have fabricated 3D graphene electrode structures to provide ES to human adipose stem cells (ADSCs). The assemblies support ADSC growth and differentiation, with ES augmenting proliferation and osteogenesis. Our findings expand our previous work on…
A self-hardening three-dimensional (3D)-porous composite bone graft consisting of 65 wt% hydroxyapatite (HA) and 35 wt% aragonite was fabricated using a 3D-Bioplotter®. New tetracalcium phosphate and dicalcium phosphate anhydrous/aragonite/gelatine paste formulae were developed to overcome the phase separation of the liquid and solid components. The mechanical properties, porosity, height and width stability of the end products were optimised through a systematic analysis of the fabrication processing parameters including printing pressure, printing speed and distance between strands. The resulting 3D-printed bone graft was confirmed to be a mixture of HA and aragonite by X-ray diffraction, Fourier transform infrared spectroscopy and energy…
High molecular weight polyhydroxymethylene (PHM) has a repeat unit identical to that of low molecular weight sugar alcohols and exhibits carbohydrate‐like properties. Herein, cryogenic extrusion‐based 3D printing is combined with a phase separation in water to fabricate hierarchically porous PHM scaffolds containing interconnected macro‐, micro‐, and nanopores. As PHM is infusible and insoluble in common solvents, its precursor polyvinylene carbonate (PVCA) dissolved in dimethylsulfoxide (DMSO) is used to 3D print hierarchically porous PVCA scaffolds that are converted into PHM by hydrolysis without impairing the pore architectures. Similar to low‐temperature deposition manufacturing, the PVCA/DMSO freezes on a build platform at −78…
Designing bone scaffolds containing both organic and inorganic composites simulating the architecture of the bone is the most important principle in bone tissue engineering. The objective of this study was to fabricate a composite scaffold containing poly (D, l)-lactide (PDLLA) and β-tricalcium phosphate (β-TCP) as a platform for osteogenic differentiation of adipose-derived mesenchymal stem cells. In this study, PDLLA/β-TCP scaffolds were fabricated using three-dimensional printing (3D) technology through melt excursion technique. The physicomechanical characteristics, including microstructure, mechanical properties, of the customized scaffolds were investigated. Further, the in vitro biological characteristics of manufactured scaffolds were evaluated in conjugation with buccal fat…
The ability to produce constructs with a high control over the bulk geometry and internal architecture has situated 3D printing as an attractive fabrication technique for scaffolds. Various designs and inks are actively investigated to prepare scaffolds for different tissues. In this work, we prepared 3D printed composite scaffolds comprising polycaprolactone (PCL) and various amounts of reduced graphene oxide (rGO) at 0.5, 1, and 3 wt.%. We employed a two-step fabrication process to ensure an even mixture and distribution of the rGO sheets within the PCL matrix. The inks were prepared by creating composite PCL-rGO films through solvent evaporation casting…
Here, we report a newly designed knee plug to be used in the 3rd generation of Autologous Chondrocyte Implantation (ACI) in order to heal the damaged knee cartilage. It is composed of three components: The first component (Bone Portion) is a 3D printed hard scaffold with large pores (~ 850 µm), made by hydroxyapatite and β-tricalcium phosphate to accommodate the bony parts underneath the knee cartilage. It is a cylinder with a diameter of 20 mm and height of 7.5 mm, with a slight dome shape on top. The plug also comprises a Cartilage Portion (component 2) which is a 3D…
In this study, porous bioglass/gelatin/alginate bone tissue engineering scaffolds were fabricated by three-dimensional printing. The compressive strength and in vitro biomineralization properties of the bioglass–gelatin–alginate scaffolds (BG/Gel/SA scaffolds) were significantly improved with the increase of bioglass content until 30% weight percentage followed by a rapid decline in strength. In addition, the cells attach and spread on the BG/Gel/SA scaffolds surfaces represents good adhesion and biocompatibility. Furthermore, the cells (rat bone marrow mesenchymal stem cells, mBMSCs) proliferation and osteogenic differentiation on the BG/Gel/SA scaffolds were also promoted with the increase of bioglass content. Overall, the adding of bioglass in Gel/SA scaffolds…
Regenerative repair of craniomaxillofacial bone injuries is challenging due to both the large size and irregular shape of many defects. Mineralized collagen scaffolds have previously been shown to be a promising biomaterial implant to accelerate craniofacial bone regeneration in vivo. Here we describe inclusion of a 3D-printed polymer or ceramic-based mesh into a mineralized collagen scaffold to improve mechanical and biological activity. Mineralized collagen scaffolds were reinforced with 3D-printed Fluffy-PLG (ultraporous polylactide-co-glycolide co-polymer) or Hyperelastic Bone (90wt% calcium phosphate in PLG) meshes. We show degradation byproducts and acidic release from the printed structures have limited negative impact on the viability…
This work reports the versatility of polydopamine (PD) when applied as a particle coating in a composite of polylactide (PLA). Polydopamine was observed to increase the particle–matrix interface strength and facilitate the adsorption of drugs to the material surface. Here, barium sulfate radiopaque particles were functionalized with polydopamine and integrated into a polylactide matrix, leading to the formulation of a biodegradable and X-ray opaque material with enhanced mechanical properties. Polydopamine functionalized barium sulfate particles also facilitated the adsorption and release of the antibiotic levofloxacin. Analysis of the antibacterial capacity of these composites and the metabolic activity and proliferation of human…
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and…
We previously developed a recombinant growth factor-free, three-dimensional (3D)-printed material comprising hydroxyapatite (HA) and demineralized bone matrix (DBM) for bone regeneration. This material has demonstrated the capacity to promote re-mineralization of the DBM particles within the scaffold struts and shows potential to promote successful spine fusion. Here, we investigate the role of geometry and architecture in osteointegration, vascularization, and facilitation of spine fusion in a preclinical model. Inks containing HA and DBM particles in a poly(lactide-co-glycolide) elastomer were 3D-printed into scaffolds with varying relative strut angles (90° vs. 45° advancing angle), macropore size (0 μm vs. 500 μm vs. 1000 μm), and strut…
Although numerous spinal biologics are commercially available, a cost-effective and safe bone graft substitute material for spine fusion has yet to be proven. In this study, “3D-Paints” containing varying volumetric ratios of hydroxyapatite (HA) and human demineralized bone matrix (DBM) in a poly(lactide-co-glycolide) elastomer were three-dimensional (3D) printed into scaffolds to promote osteointegration in rats, with an end goal of spine fusion without the need for recombinant growth factor. Spine fusion was evaluated by manual palpation, and osteointegration and de novo bone formation within scaffold struts were evaluated by laboratory and synchrotron microcomputed tomography and histology. The 3:1 HA:DBM composite…
Osteocytes, essential regulators of bone homeostasis, are embedded in the mineralized bone matrix. Given the spatial arrangement of osteocytes, bioprinting represents an ideal method to biofabricate a 3D osteocyte network with a suitable surrounding matrix similar to native bone tissue. Here, we reported a 3D bioprinted osteocyte-laden hydrogel for biomimetic mineralization in vitro with exceptional shape fidelity, a high cell density (107 cells per ml) and high cell viability (85–90%). The bioinks were composed of biomimetic modified biopolymers, namely, gelatine methacrylamide (GelMA) and hyaluronic acid methacrylate (HAMA), with or without type I collagen. The osteocyte-laden constructs were printed and cultured…
Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]n H2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA…
The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 (1393@MBG). Furthermore, we have applied DEX and BMP-2 on the 1393@MBG scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this 1393@MBG scaffold could effectively load and controlled release BMP-2, DNA and…
Bacterial infection of the implanting materials is one of the greatest challenges in bone tissue engineering. In this study, porous forsterite scaffolds with antibacterial activity have been fabricated by combining 3D printing and polymer-derived ceramics (PDCs) strategy, which effectively avoided the generation of MgSiO3 and MgO impurities. Forsterite scaffolds sintered in an argon atmosphere can generate free carbon in the scaffolds, which exhibited excellent photothermal effect and could inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. In addition, forsterite scaffolds have uniform macroporous structure, high compressive strength (>30 MPa) and low degradation rate….
Repairing massive rotator cuff tendon defects remains a challenge due to the high retear rate after surgical intervention. 3D printing has emerged as a promising technique that enables the fabrication of engineered tissues with heterogeneous structures and mechanical properties, as well as controllable microenvironments for tendon regeneration. In this study, we developed a new strategy for rotator cuff tendon repair by combining a 3D printed scaffold of polylactic-co-glycolic acid (PLGA) with cell-laden collagen-fibrin hydrogels. We designed and fabricated two types of scaffolds: one featuring a separate layer-by-layer structure and another with a tri-layered structure as a whole. Uniaxial tensile tests…
Bone scaffold for aiding bone regeneration in large bone defects should have following ideal characteristics; biocompatibility, biodegradability, bio-activity, high porous and interconnected-pore architecture, as well as, mechanical characteristics similar to the cortical bone for supporting loads. 3D printed Sr–HT (Sr–Ca2ZnSi2O7)–gahnite scaffold with hexagonal pore structure is an interesting bone scaffold meeting most of these ideal features. To explain, biocompatible, osteoinductive, and osteoconductive properties as well as unique high compressive strength are obtained from Sr–HT–gahnite, glass-ceramic, material. With hexagonal pore structure, the scaffold has compressive strength comparable to cortical bone balancing with high porosity and large pore size. Nonetheless, the scaffold…
The use of composite materials, processed as 3D tissue-like scaffolds, has been widely investigated as a promising strategy for bone tissue engineering applications. Also, additive manufacturing technologies such as fused deposition modelling (FDM) have greatly contributed to the manufacture of patient-specific scaffolds with predefined pore structures and intricate geometries. However, conventional FDM techniques require the use of materials exclusively in the form of filaments, which in order to produce composite scaffolds lead to additional costs for the fabrication of precursor filaments as well as multi-step production methods. In this study, we propose the use of an advantageous extrusion-based printing technology,…
With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…
Reproducing the advanced complexity of native tissue by means of the 3D multi-functional construct is a promising tissue engineering approach to osteochondral tissue regeneration. In this study, we present a porous 3D construct composed of three zones responsible for the regeneration of non-calcified cartilage, calcified cartilage and subchondral bone. These three zones of the hybrid were composed of modified biopolymers: (i) alginate (Alg) reinforced by short polylactide (PLA) fibres, (ii) alginate and gelatine methacrylate (GelMA) combined with ß-tricalcium phosphate particles (TCP), (iii) 3D printed polycaprolactone scaffold subsequently modified with the use of an innovative solvent treatment method based on acetone…
A 3D bioprinted pseudo-bone drug delivery scaffold was fabricated to display matrix strength, matrix resilience, as well as porous morphology of healthy human bone. Computer-aided design (CAD) software was employed for developing the 3D bioprinted scaffold. Further optimization of the scaffold was undertaken using MATLAB® software and artificial neural networks (ANN). Polymers employed for formulating the 3D scaffold comprised of polypropylene fumarate (PPF), free radical polymerized polyethylene glycol- polycaprolactone (PEG-PCL-PEG), and pluronic (PF127). Simvastatin was incorporated into the 3D bioprinted scaffolds to further promote bone healing and repair properties. The 3D bioprinted scaffold was characterized for its chemical, morphological, mechanical,…
Bone defects are common and, in many cases, challenging to treat. Tissue engineering is an interdisciplinary approach with promising potential for treating bone defects. Within tissue engineering, three-dimensional (3D) printing strategies have emerged as potent tools for scaffold fabrication. However, reproducibility and quality control are critical aspects limiting the translation of 3D printed scaffolds to clinical use, which remain to be addressed. To elucidate the factors that yield to the generation of defects in bioprinting and to achieve reproducible biomaterial printing, the objective of this article is to frame a systematic approach for optimizing and validating 3D printing of poly(caprolactone)…
Objectives This study investigates the design, workflow, and manufacture of highly porous, resorbable additively manufactured, 3‐dimensional (3D) custom scaffolds for the regeneration of large volume alveolar bone defects. Materials and Methods Computed tomography (CT) scans of 5 posterior mandibular vertical bone defects were obtained. Surface masks (3D surface contours) of the recipient site were first isolated using a contrast threshold, transformed into 3D objects, and used to guide the formation of custom implant template models. To determine model accuracy and fit, the gap and overlap between the patient geometry models and the idealized template 3D models were quantified. Models were…
Improving bone regeneration is one of the most pressing problems facing bone tissue engineering (BTE) which can be tackled by incorporating different biomaterials into the fabrication of the scaffolds. The present study aims to apply the 3D-printing and freeze-drying methods to design an ideal scaffold for improving the osteogenic capacity of Dental pulp stem cells (DPSCs). To achieve this purpose, hybrid constructs consisted of 3D-printed Beta-tricalcium phosphate (β-TCP)-based scaffolds filled with freeze-dried gelatin/reduced graphene oxide-Magnesium-Arginine (GRMA) matrix were fabricated through a novel green method. The effect of different concentrations of Reduced graphene oxide-Magnesium-Arginine (RMA) (0, 0.25% and 0.75%wt) on the…
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture…
As 3D printing becomes more common and the technique is used to build culture platforms, it is imperative to develop surface treatments for specific responses. The advantages of aminating and oxidizing polystyrene (PS) for human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation are investigated. We find that ammonia (NH3) plasma incorporates amines while oxygen plasma adds carbonyl and carboxylate groups. Across 2D, 3D, and 3D dynamic culture, we find that the NH3- treated surfaces encouraged cell proliferation. Our results show that the NH3-treated scaffold was the only treatment allowing dynamic proliferation of hMSCs with little evidence of osteogenic differentiation….
In this study of three-dimensional (3D) printed composite β-tricalcium phosphate (β-TCP)-/hydroxyapatite/poly(ɛ-caprolactone)-based constructs, the effects of vertical compositional ceramic gradients and architectural porosity gradients on the osteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs) were investigated. Specifically, three different concentrations of β-TCP (0, 10, and 20 wt%) and three different porosities (33% ± 4%, 50% ± 4%, and 65% ± 3%) were examined to elucidate the contributions of chemical and physical gradients on the biochemical behavior of MSCs and the mineralized matrix production within a 3D culture system. By delaminating the constructs at the gradient transition point, the spatial separation of cellular phenotypes could be specifically…
Background The anatomical properties of the enthesis of the rotator cuff are hardly regained during the process of healing. The tendon-to-bone interface is normally replaced by fibrovascular tissue instead of interposition fibrocartilage, which impairs biomechanics in the shoulder and causes dysfunction. Tissue engineering offers a promising strategy to regenerate a biomimetic interface. Here, we report heterogeneous tendon-to-bone interface engineering based on a 3D-printed multiphasic scaffold. Methods A multiphasic poly(ε-caprolactone) (PCL)–PCL/tricalcium phosphate–PCL/tricalcium phosphate porous scaffold was manufactured using 3D printing technology. The three phases of the scaffold were designed to mimic the graded tissue regions in the tendon-to-bone interface—tendon, fibrocartilage, and…
Synthetic polycaprolactone (PCL) was modified with various concentrations of gelatin (GL) to enhance its physical properties and biological activity for bone regeneration. A novel trisolvent mixture has been used to mix PCL and GL that were fabricated as scaffolds using 3D plotting. The scaffolds were characterized for their mechanical properties, hydrophilicity and swelling ability. In addition, the structure and morphology of the printed scaffolds were analyzed by Fourier-Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and microcomputed tomography (μCT). Attachment, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSC) cultured on the printed scaffolds were…
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient’s existing tissue. The goal of this study was to create a scaffold that would induce site‐specific osteogenic and chondrogenic differentiation of human adipose‐derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using…
There is a growing interest in developing 3D porous scaffolds with tunable architectures for bone tissue engineering. Surface topography has been shown to control stem cell behavior including differentiation. In this study, we printed 3D porous scaffolds with wavy or linear patterns to investigate the effect of wavy scaffold architecture on human mesenchymal stem cell (hMSC) osteogenesis. Five distinct wavy scaffolds were designed using sinusoidal waveforms with varying wavelengths and amplitudes, and orthogonal scaffolds were designed using linear patterns. We found that hMSCs attached to wavy patterns, spread by taking the shape of the curvatures presented by the wavy patterns,…
The residual of malignant tumor cells and lack of bone‐tissue integration are the two critical concerns of bone‐tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D‐printing bioactive glass (BG) scaffolds for achieving concurrent bone‐tumor killing by photonic hyperthermia and bone‐tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone‐tumor ablation by near infrared‐triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone‐tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene…
Three dimensional (3D) printing has been used to fabricate bioceramic scaffolds for treating the tumor-related defects in recent years, but the fabrication process and the introduction of anti-tumor agents are still challenging. In this study, porous free carbon-embedding larnite (larnite/C) scaffolds have been successfully fabricated by 3D printing of the silicone resin loaded with CaCO3 filler and high temperature treatment under an inert atmosphere. The fabricated larnite/C scaffolds had uniform interconnected macropores (ca. 400 μm), and exhibited excellent photothermal effect, which was able to kill human osteosarcoma cells (MNNG/HOS) and inhibit the tumor growth in nude mice. Moreover, the larnite/C scaffolds…
3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP…
This paper introduces a kit of parts as a novel three‐dimensional (3D)–printed joint plug, in which each of the parts function cooperatively to treat cartilage damage in joints of the human body (e.g., hips, wrists, elbow, knee, and ankle). Three required and one optional parts are involved in this plug. The first part is a 3D‐printed hard scaffold (bone portion) to accommodate bone cells, and the second is a 3D‐printed soft scaffold (cartilage portion) overlying the bone portion to accommodate chondrocytes. The third part of joint plug is a permeable membrane, termed film, to cover the entire plug to provide…
Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore,…
Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…
Recent advances have demonstrated the ability to 3D-print, via extrusion, solvent-based liquid materials (previously named 3D-Paints) which solidify nearly instantaneously upon deposition and contain a majority by volume of solid particulate material. In prior work, the dissolved polymer binder which enables this process is a high molecular weight biocompatible elastomer, poly(lactic-co-glycolic) acid (PLGA). We demonstrate in this study an expansion of this solvent-based 3D-Paint system to two additional, less-expensive, and less-specialized polymers, polystyrene (PS) and polyethylene oxide (PEO). The polymer binder used within the 3D-Paint was shown to significantly affect the as-printed and thermal postprocessing behavior of printed structures. This…
This study investigates if the application of bone marrow-derived mesenchymal stem cells (BM-MSCs) loaded 3D-printed scaffolds could improve rotator cuff repair. The polylactic-co-glycolic acid (PLGA) scaffolds were fabricated by 3D print technology. Rabbit BM-MSCs were transfected with a recombinant adenovirus encoding bone morphogenic protein 12 (BMP-12). The effect of BM-MSCs loaded PLGA scaffolds on tendon-bone healing was assessed by biomechanical testing and histological analysis in a rabbit rotator cuff repair model. We found that the PLGA scaffolds had good biocompatible and biodegradable property. Overexpression of BMP-12 increased the mRNA and protein expression of tenogenic genes in BM-MSCs cultured with DMEM…
This work investigated a new 3D-printing methodology to prepare porous scaffolds containing horizontal pore and composition gradients. To achieve that, a multimaterial printing technology developed in our laboratory was adapted to incorporate pore gradients. Fibers were printed by welding segments with unique material compositions and fiber diameters. Particularly, we focused on the preparation of model composite poly(ε-caprolactone)-based scaffolds with radial gradients of particulate hydroxyapatite (HA) content (higher concentrations in the outer region of the scaffold) and porosity (higher in the inner region). The morphology of the scaffolds revealed that the methodology allowed the fabrication of discrete regions with compressive mechanical…
The fabrication of bone tissue engineering scaffolds with high osteogenic ability and favorable mechanical properties is of huge interest. In this study, a silk fibroin (SF) solution of 30 wt% was extracted from cocoons and combined with mesoporous bioactive glass (MBG) to fabricate MBG/SF composite scaffolds by 3D printing. The porosity, compressive strength, degradation and apatite forming ability were evaluated. The results illustrated that MBG/SF scaffolds had superior compressive strength (ca. 20 MPa) and good biocompatibility, and stimulated bone formation ability compared to mesoporous bioactive glass/polycaprolactone (MBG/PCL) scaffolds. We subcutaneously transplanted hBMSCs-loaded MBG/SF and MBG/PCL scaffolds into the back of nude mice…
Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation…
Inefficient bone regeneration of self‐hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis‐stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic‐co‐glycolic acid) (PLGA) network to fabricate plastic CPC‐based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon…
Simple ternary SiO2CaOP2O5 bioglasses proved sufficient osteogenesis capacity. In this study, the bioglasses were 3D printed into porous scaffolds and SiO2/CaO molar ratio was altered (from 90/5 to 60/35) to achieve tunable glass-ceramic compositions after thermal treatment. Scaffolds possessed interconnected porous structure with controllable porosities via 3D printing technique. In addition, microstructure and properties of mechanical strength, degradation, ion dissolution and apatite formation were investigated. Characterization results showed that higher content of SiO2 produced more homogeneous crystalline particles and sintering compactness, thus led to higher strength. For scaffolds with higher CaO content, more glasses were maintained and faster degradation rate…
There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteostatin and Zn2+ ions, and their osteogenic effect on human mesenchymal stem cells (hMSCs) as a preclinical strategy in bone regeneration. The MBG compositions investigated were 80%SiO2–15%CaO–5%P2O5 (in mol-%) Blank (BL), and two analogous glasses containing 4% ZnO (4ZN) and 5% ZnO (5ZN). By using additive fabrication techniques, scaffolds exhibiting hierarchical porosity: mesopores (around 4 nm), macropores (1–600 μm) and big channels (∼1000 μm), were prepared. These MBG scaffolds…
Craniotomy involves the removal of a skull fragment to access the brain, such as during tumor or epilepsy surgery, which is immediately replaced intraoperatively. The infection incidence after craniotomy ranges from 0.8 to 3%, with approximately half caused by Staphylococcus aureus (S. aureus). To mitigate infectious complications following craniotomy, we engineered a three-dimensional (3D) bioprinted bone scaffold to harness the potent antibacterial activity of macrophages (MΦs) together with antibiotics using a mouse S. aureus craniotomy-associated biofilm model that establishes a persistent infection on the bone flap, subcutaneous galea, and brain. The 3D scaffold contained rifampin and daptomycin printed in a…
Recent developments in 3D printing (3DP) research have led to a variety of scaffold designs and techniques for osteochondral tissue engineering; however, the simultaneous incorporation of multiple types of gradients within the same construct remains a challenge. Herein, we describe the fabrication and mechanical characterization of porous poly(ε-caprolactone) (PCL) and PCL-hydroxyapatite (HA) scaffolds with incorporated vertical porosity and ceramic content gradients via a multimaterial extrusion 3DP system. Scaffolds of 0 wt% HA (PCL), 15 wt% HA (HA15), or 30 wt% HA (HA30) were fabricated with uniform composition and porosity (using 0.2 mm, 0.5 mm, or 0.9 mm on-center fiber spacing), uniform composition and gradient porosity, and…
3D printing provides a novel approach to repair bone defects using customized biomimetic tissue scaffolds. To make a bone substitute closest to natural bone structure and composition, two different types of hydroxyapatite, Nano hydroxyapatite (nHA) and deproteinized bovine bone (DBB), were dispersed into collagen (CoL) to prepare the bio-ink for 3D printing. In doing so, a porous architecture was manufactured with 3D printing technology. The physical and chemical properties of the materials were evaluated, including biocompatibility and effect on the osteogenic differentiation of the human bone marrow-derived mesenchyme stem cells (hBMSCs). The XPS, XRD, FTIR, and the mechanical analysis of…
Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to…
In an attempt to fabricate biomimetic bone repair scaffolds and improve bone regeneration point of view, we have three dimensionally printed porous scaffolds with biomineralized hydroxyapatite/silk fibroin nanocomposites. SF/HA composite particles were firstly produced via an in-situ mineral precipitation process when SF molecules were served as templates.. Microscopy observations of SF/HA showed homogeneous morphology and narrowly distributed size. By using sodium alginate (SA) as paste binder, scaffolds with different contents of SF/HA were subsequently 3D-printed under proper conditions. All the scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity about 70%, combined with a relative…
The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of ∼300 μm, ∼380 μm, and ∼460 μm were generated by embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. We have used an I-optimal design of experiments…
Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…
Accurate determination of lattice parameters from X-ray diffraction requires that the diffraction angles be measured very precisely, and significant errors result if the sample–detector separation differs from that assumed. Transmission diffraction from bones, which have a complex cross section and must be left intact, is a situation where this separation is difficult to measure and it may differ from position to position across the specimen. This article describes a method for eliminating the effect of variable sample cross section. Diffraction patterns for each position on the specimen are collected before and after 180° rotation about an axis normal to the…
In this work, we present a printing method to fabricate scaffolds consisting of multimaterial segmented fibers. Particularly, we developed a reproducible printing process to create single fibers with multiple discrete compositions and control over the distribution of particulate ceramics—namely hydroxyapatite (HA) and β-tricalcium phosphate (TCP)—within poly(ɛ-caprolactone)-based composite scaffolds. Tensile testing revealed that the mechanical integrity of individual segmented fibers was preserved compared with nonsegmented fibers, and microcomputed tomography and thermal analysis confirmed the homogeneous distribution of ceramics incorporated in the fiber compositions. Moreover, we printed and characterized composite scaffolds containing model inverse radial gradients of HA and TCP that could…
3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase…
This paper presents a new way to obtain collagen/hydroxyapatite (COLL/HA) composite materials by 3D printing. Because of high tendency of segregation of COLL/HA composite materials, printing was done using COLL/Ca2+ gel (even COLL/Ca(OH)2) followed by precipitation of HA and crosslinking of COLL. The HA precipitation occurs simultaneously with crosslinking of COLL molecules, these processes being assured by the presence of glutaraldehyde supplemented PBS solution. By printing with COLL/Ca2+ at acidic pH homogeneity was increased. FTIR spectroscopy and microscopy reveal HA formation as the main inorganic phase these nanoparticles being homogeneously dispersed in the volume. In vitro biocompatibility assays were performed…
Immune responses after injury play a critical role in bone regeneration. Initiation of inflammation at early stages of repair triggers tissue formation and remodeling; however, uncontrolled inflammation underlies a catabolic effect on tissues as commonly seen in arthritis where inflammation breaks down tissues and hinders regeneration. Our ultimate goal is to design a novel approach on bone scaffolds for which biodegradable scaffolds are loaded with inflammatory cytokines for local immunomodulation as well as bone regeneration. We employed nanoparticles (NPs) composed of heparin (Hep) and poly-L-lysine (PLL) as cytokine drug carriers adhered on 3D-printed poly(lactic-co-glycolic acid) (PLGA) scaffolds. The entire drug…
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation‐related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage‐conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast…
Bioactive and degradable scaffolds of nano magnesium silicate (n-MS)/zein (ZN)/poly(caprolactone) (PCL) ternary composites were prepared by 3D-printing method. The results showed that the 3D-printed scaffolds possessed controllable pore structure, and pore morphology, pore size, porosity and pore interconnectivity of the scaffolds can be efficiently adjusted. In addition, the apatite-mineralization ability of the scaffolds in simulated body fluids was obviously improved with the increase of ZN content, in which the scaffold with 20 w% ZN (C20) possessed excellent apatite-mineralization ability. Moreover, the degradability of the scaffolds was significantly enhanced with the increase of ZN content in the scaffolds. The degradation of…
Three‑dimensional printed (3DP) scaffolds have become an excellent resource in alveolar bone regeneration. However, selecting suitable printable materials remains a challenge. In the present study, 3DP scaffolds were fabricated using three different ratios of poly (ε‑caprolactone) (PCL) and poly‑lactic‑co‑glycolic acid (PLGA), which were 0.1PCL/0.9PLGA, 0.5PCL/0.5PLGA and 0.9PCL/0.1PLGA. The surface characteristics and degradative properties of the scaffolds, and the response of human periodontal ligament stem cells (hPDLSCs) on the scaffolds, were assessed to examine the preferable ratio of PCL and PLGA for alveolar bone regeneration. The results demonstrated that the increased proportion of PLGA markedly accelerated the degradation, smoothed the surface…
Three-dimensional (3D) porous scaffolds with sustained drug delivery are pursued for osteoarticular tuberculosis therapy after surgery. In this study, mesoporous bioactive glass/metal-organic framework (MBG/MOF) scaffolds with sustained antitubercular drug release have been fabricated by 3D printing. The results showed that the MBG/MOF scaffolds possess macropores of ca. 400 μm and enhanced compressive strength of 3–7 MPa, also exhibited good biocompatibility and apatite forming ability in vitro. Furthermore, the drug release rate and pH microenvironment of the MBG/MOF scaffolds could be controlled due to the MOF degradation. These results indicated that the 3D printed MBG/MOF scaffolds are promising for treating osteoarticular tuberculosis.
Vascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation. The sequential cell-seeding protocol was successfully applied to both natural (decellularized native bone, or DB) and synthetic (3D-printed Hyperelastic “Bone” scaffolds, or HB) scaffolds, demonstrating a comprehensive platform for developing natural and synthetic-based in vitro vascularized…
Bioactive scaffolds with interconnected porous structures are essential for guiding cell growth and new bone formation. In this work, we successfully fabricated three-dimensional (3D) porous β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composite scaffolds with different ratios by 3D printing technique and further investigated the physiochemical properties, in vitro apatite mineralization properties and degradability of porous β-TCP/CS scaffolds. Moreover, a series of in vitro cell experiments including the attachment, proliferation and osteogenic differentiation of mouse bone marrow stromal cells were conducted to testify their biological performances. The results showed that 3D printed β-TCP/CS scaffolds possessed of controllable internal porous structures and external…
To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and…
Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-ε-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm2-sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young’s modulus of 1.60 ± 0.1 GPa; Martens hardness of 153 ± 28 MPa), matching those of cortical…
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and…
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated…
Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity,…
The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts…
Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…
Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their…
One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such…
In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the…
The development of biomaterials with high osteogenic ability for fast osteointegration with a host bone is of great interest. In this study, pearl/CaSO4 composite scaffolds were fabricated using three-dimensional (3D) printing, followed by a hydration process. The pearl/CaSO4 scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼60%), and enhanced compressive strength. With CaSO4 scaffolds as a control, the biological properties of the pearl/CaSO4 scaffolds were evaluated in vitro and in vivo. The results showed that the pearl/CaSO4 scaffolds possessed a good apatite-forming ability and stimulated the proliferation and differentiation of rat bone mesenchymal stem cells (rBMSCs), as well as…
β-TCP-Zirconia scaffolds with different architectures were fabricated by means of 3D-Bioplotting in order to enhance the mechanical and in-vitro ability of the scaffold to heal large size bone defects. In the present study scaffold architecture with different strand orientations (0o-90o, 0o-45o-135o-180o, 0o-108o-216o and 0o-72o-144o-36o-108o) were fabricated, characterized and evaluated for mechanical strength and cell proliferation ability. β-TCP powder (25µm) and PVA (Polyvinyl Alcohol) was acquired from Fisher Scientific, India. Zirconia (18 to 32 µm) was procured from Lobachemie, India. In brief 7.5%, PVA in distilled water was used as a binder and was mixed with 10 grams of (70/30) TCP-Zirconia…
In the study, we developed hierarchical composite scaffolds by 3D printing technique with mesoporous CaSiO3 containing controlled amounts of Ce substitution in Ca–Si system. The scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity above 70 %, combined with a relative high compressive strength (~7 MPa). These properties are essential for enhancing bone ingrowth in tissue engineering. The in vitro biological properties of apatite formation, cell proliferation, and differentiation were characterized on CeO2-MCS scaffolds and MCS scaffolds. Results indicated that CeO2-MCS scaffolds induced similar apatite deposition and cell attachment of human bone marrow stromal…
Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic “bone” (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm3/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32…
Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining,…
There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could…
To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…
An ideal behavior of a tissue engineering scaffold is that it degrades and reshapes at a rate that matches the formation of new tissues. However, this ideal situation may not occur as the scaffold often undergoes too slow or too fast degradation. To test the promise of the active control of scaffold degradation, in this work, a photo/water dual-degradable porous scaffold was designed and fabricated using a 3D fiber deposition (3DF) system from a linear biopolymer (named PLANB) that combined the o-nitrobenzyl linkages and hydrolysable ester bone in the polymer chains. The chemical structure, molecular weight and polydispersity of PLANB…
Development of 3D porous scaffolds with proper mechanical strength is crucial in bone tissue engineering. In this study, calcium sulfate hemihydrate (CSH) cement was functionally incorporated into mesoporous calcium silicate (MCS) through a 3D printing technique in order to improve the scaffold strength. Compared to printed MCS scaffolds, the characterizations revealed that 20% CSH incorporation had enhanced their compressive strength by 2 times via 4 weeks’ hydration. Furthermore, CSH incorporation prevented the fast pH value rise and achieved a balanced degradation rate. SEM observations showed a good apatite formation on the surfaces of both MCS and MCS/CSH scaffolds. Cellular experiments…
Bone defects, particularly large bone defects resulting from infections, trauma, surgical resection or genetic malformations, maintain a significant challenge for clinicians. In this study, the tricalcium silicate/mesoporous bioactive glass (C3S/MBG) cement scaffolds were successfully fabricated for the first time by 3D printing with a curing process, which combined the hydraulicity of C3S with the excellent biological property of MBG together. The C3S/MBG scaffolds exhibited 3D interconnected macropores (~400μm), high porosity (~70%), enhanced mechanical strength (>12MPa) and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on the scaffolds to evaluate their cell responses, and the results…
The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium…
The aim of this study was to synthesize and characterize self-crosslinked bioactive glass/alginate composite scaffolds, as a kind of potential biomaterial for bone regeneration. The scaffolds were fabricated through a self-crosslinking process of alginate by bioactive glass microspheres provided Ca2+ completely, without any organic solvent, crosslinking agent or binder. The microstructure, mechanical properties, apatite-forming ability, ionic release, adhesion, proliferation and ALP activity of human bone marrow-derived mesenchymal stem cells (hBMSCs) of the scaffolds were evaluated. The results showed that uniform films could be obtained on the surface as well as abundant of crosslinking bridges in the interior of scaffolds. The…
Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution…
With the emergence of 3D-printing (3DP) as a vital tool in tissue engineering and medicine, there is an ever growing need to develop new biomaterials that can be 3D-printed and also emulate the compositional, structural, and functional complexities of human tissues and organs. In this work, we probe the 3D-printable biomaterials spectrum by combining two recently established functional 3D-printable particle-laden biomaterial inks: one that contains hydroxyapatite microspheres (Hyperelastic Bone, HB) and another that contains graphene nanoflakes (3D-Graphene, 3DG). We demonstrate that not only can these distinct, osteogenic and neurogenic inks be co-3D-printed to create complex, multi-material constructs, but that composite…
Biomimetic materials have been gaining increasing importance in tissue engineering since they may provide regenerative alternatives to the use of autologous tissues for transplantation. In the present study, we applied for bioprinting of a functionalized three-dimensional template, N,O-carboxymethyl chitosan (N,O-CMC), mimicking the physiological extracellular matrix. This polymer, widely used in tissue engineering, has been provided with functional activity by integration of polyphosphate (polyP), an osteogenically acting natural polymer. The two polymers, N,O-CMC and polyP, are linked together via Ca2+ bridges. This N,O-CMC + polyP material was proven to be printable and durable. The N,O-CMC + polyP printed layers and tissue…
Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37…
After surgical treatment of osteoarticular tuberculosis (TB), it is necessary to fill the surgical defect with an implant, which combines the merits of osseous regeneration and local multi-drug therapy so as to avoid drug resistance and side effects. In this study, a 3D-printed macro/meso-porous composite scaffold is fabricated. High dosages of isoniazid (INH)/rifampin (RFP) anti-TB drugs are loaded into chemically modified mesoporous bioactive ceramics in advance, which are then bound with poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) through a 3D printing procedure. The composite scaffolds show greatly prolonged drug release time compared to commercial calcium phosphate scaffolds either in vitro or in vivo….
The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼70%) and enhanced compressive strength (8.67 ± 1.74 MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial…
In the surgical treatment of tuberculosis of the bones, excision of the lesion site leaves defects in the bone structure. Recent research has shown benefits for bone tissue support, such as tricalcium phosphate, as regrowth materials. These biocompatible engineering materials have good bone inductivity and biologic mechanical performance. The goal of this study was to evaluate the use of 3D printing, a new technology, to design and build 3-dimensional support structures for use in grafting at lesion sites and for use in embedding the sustained release anti-tuberculosis drugs Rifampin and Isoniazid and determine the in vivo performance of these structures….
3D scaffolds based in mesoporous bioactive glasses (MBGs) are being widely investigated to use in bone tissue engineering (TE) applications. These scaffolds are often obtained by rapid prototyping (RP) and exhibit an array of interconnected pores in a hierarchy of sizes. The ordered mesopore network (around 4 nm in diameter) is optimal for the adsorption and release of bone inductor biomolecules, and the arrangement of macropores over 100 μm facilitates the bone cell ingrowths and angiogenesis. Nevertheless MBG composition can be varied almost infinitely at the atomic scale by including in the glass network oxides of inorganic elements with a…
Porous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry…
Angiogenesis–osteogenesis coupling processes are vital in bone tissue engineering. Normal biomaterials implanted in bone defects have issues in the sufficient formation of blood vessels, especially in the central part. Single delivery of vascular endothelial growth factors (VEGF) to foci in previous studies did not show satisfactory results due to low loading doses, a short protein half-life and low efficiency. Development of a hypoxia-mimicking microenvironment for cells by local prolyl-4-hydroxylase inhibitor release, which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression, is an alternative method. The aim of this study was to design a dimethyloxallyl glycine (DMOG) delivering scaffold composed of mesoporous…
A suitable drug-loaded scaffold that can postoperatively release an antituberculosis drug efficiently in a lesion area and help repair a bone defect is very important in the clinical treatment of bone tuberculosis (TB). In this study, a composite drug-loaded cylindrical scaffold was prepared by using three-dimensional printing technology in combination with the mesoporous confinement range, surface chemical groups, and gradual degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). This achieves the slow release of a drug for as long as possible. We implanted the drug-loaded compound scaffold into New Zealand rabbits’ femur defect model to study the in vivo drug release performance and osteogenic ability….
The design and fabrication of advanced biocompatible and bioresorbable materials able to mimic the natural tissues present in the human body constitutes an important challenge in regenerative medicine. The size-dependent properties that materials exhibit at the nanoscale as a consequence of their higher surface-to-volume ratio have opened a wide range of opportunities for applications in almost every imaginable field. In this regard, the incorporation of magnetic nanoparticles (MNPs) into biocompatible scaffold formulations provides final materials with additional multifunctionality and reinforced mechanical properties for bone tissue engineering applications. In addition to the biological implications due to their magnetic character (i.e., magnetic…
In this study, three-dimensional (3D) magnetic Fe3O4 nanoparticles containing mesoporous bioactive glass/polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds have been fabricated by the 3D-printing technique. The physiochemical properties, in vitro bioactivity, anticancer drug delivery, mechanical strength, magnetic heating ability and cell response of Fe3O4/MBG/PCL scaffolds were systematically investigated. The results showed that Fe3O4/MBG/PCL scaffolds had uniform macropores of 400 μm, high porosity of 60% and excellent compressive strength of 13–16 MPa. The incorporation of magnetic Fe3O4 nanoparticles into MBG/PCL scaffolds did not influence their apatite mineralization ability but endowed excellent magnetic heating ability and significantly stimulated proliferation, alkaline phosphatase (ALP) activity, osteogenesis-related gene…
In tissue engineering research, generating constructs with an adequate extent of clinical applications remains a major challenge. In this context, rapid blood vessel ingrowth in the transplanted tissue engineering constructs is the key factor for successful incorporation. To accelerate the microvascular development in engineered tissues, we preincubated osteoblast-like cells as well as mesenchymal stem cells or a combination of both cell types in Matrigel-filled PLGA scaffolds before transplantation into the dorsal skinfold chambers of balb/c mice. By the use of preincubated mesenchymal stem cells, a significantly accelerated angiogenesis was achieved. Compared with previous studies that showed a decisive increase of…
Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase…
We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin…
In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the…
Bone marrow derived mesenchymal stem cells (bmMSCs) are widely used for the generation of tissue engineering constructs, since they can differentiate into different cell types occurring in bone tissues. Until now their use for the generation of tissue engineering constructs is limited. All cells inside a tissue engineering construct die within a short period of time after implantation of the construct because vascularization and establishment of connections to the recipient circulatory system is a time consuming process. We therefore compared the influences of bmMSC, VEGF and a combination of both on the early processes of vascularization, utilizing the mice skinfold…
Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a…
The bioactivity of sol–gel synthesized poly(ε-caprolactone) (PCL)/TiO2 or poly(ε-caprolactone)/ZrO2 particles was already known. In designing innovative 2D composite substrates for hard-tissue engineering, the possibility to embed PCL/TiO2 or PCL/ZrO2 hybrid fillers into a PCL matrix was previously proposed. In the present study, the potential of 3D fiber-deposition technique to design morphologically controlled scaffolds consisting of PCL reinforced with PCL/TiO2 or PCL/ZrO2 hybrid fillers was demonstrated. Finite element analysis was initially carried out on 2D substrates to find a correlation between the previously obtained results from the small punch test and the Young’s modulus of the materials, whilst mechanical and biological…
Background To address the challenge of treating critical sized intercalary defects, we hypothesized that under physiologic cyclic loading, autografts, allografts, and scaffolds loaded with and without human mesenchymal stem cells (hMSCs) would have different biomechanical characteristics. Methods Using a rat femoral defect model, 46 rats were assigned to four groups, ie, autograft (n = 12), allograft (n = 10), scaffold (n = 13), and scaffold with hMSCs (n = 11). The scaffold groups used a 5 mm segment of scaffold composed of 80% poly-ε-caprolactone and 20% hydroxyapatite. Rats were sacrificed 4 months postoperatively, and the repairs were assessed radiographically and…
The rationale for the use of polymer–ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA–HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars…
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue…
Over the past years, polymer-based materials have attracted research interest in the field of tissue repair and regeneration. As reported in literature, different injectable systems have been proposed, trying to reduce surgical invasiveness. In a first step of the current research, the rheological and functional features of injecatble hydrogel-based materials for central nervous system applications or soft tissue regeneration (collagen/PEG semi-IPNs) as well as for hard tissue engineering (alginate/iron-doped hydroxyapatite) were evaluated. Then, the study was also devoted to the development of 3D nanocomposite poly(ɛ- caprolactone)/iron-doped hydroxyapatite scaffolds for bone tissue engineering, providing a preliminary approach to assess magnetic attraction…
Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of…
A new application of layer-by-layer assembly is presented, able to create nano/micro fibrils or nanocoatings inside 3D scaffolds using non-fibrillar polyelectrolytes for tissue-engineering applications. This approach shows promise for developing advanced scaffolds with controlled nano/micro environments, and nature and architectures similar to the natural extracellular matrix, leading to improved biological performance.
This study reports the design and preparation of zwitterionic nanocrystalline hydroxyapatite (HA) capable of inhibiting bacterial adhesion while allowing osteoblast cell colonization. The surface functionalization of HA powders was carried out by post-synthesis grafting of 3-aminopropyltriethoxysilane (APTES) and carboxyethylsilanetriol sodium salt (CES) as amine and carboxylate precursors, respectively. The successful functionalization of HA surfaces was assessed by elemental chemical analysis, FTIR, 29Si, 31P and 13C solid state CP/MAS NMR and ζ-potential measurements, and the zwitterionic nature of the synthesized HA was proved through the presence of –NH3+/–COO− pairs on the material surfaces. With the aim of evaluating the feasibility of…
Mesoporous bioactive glass scaffolds (MBG_Scs), based on 80% SiO2–15% CaO–5% P2O5 (in mol.%) mesoporous sol–gel glasses substituted with Ce2O3, Ga2O3 (both 0.2% or 1.0%) and ZnO (0.4% or 2.0%), were synthesized by combination of evaporation-induced self-assembly and rapid prototyping techniques. Cerium, gallium and zinc trace elements were selected because of their inherent beneficial biological properties. Fabricated scaffolds were characterized and compared with unsubstituted scaffold (B_Sc). All of them contained well interconnected ultralarge pores (pores >400 μm) ideal for vascular ingrowth and proliferation of cells. Macropores of size 100–400 μm were present inside the scaffolds. In addition, low-angle X-ray diffraction showed…
The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with…
Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone…
The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are…
Spinal cord injuries (SCI) present a major challenge to therapeutic development due to its complexity. Combinatorial approaches using biodegradable polymers that can simultaneously provide a tissue scaffold, a cell vehicle, and a reservoir for sustained drug delivery have shown very promising results. In our previous studies we have developed a novel hybrid system consisting of starch/poly-e-caprolactone (SPCL) semi-rigid tubular porous structure, based on a rapid prototyping technology, filled by a gellan gum hydrogel concentric core for the regeneration within spinal-cord injury sites. In the present work we intend to promote enhanced osteointegration on these systems by pre-mineralizing specifically the external…
The mechanical properties of amorphous, degradable, and highly porous poly(lactide-co-caprolactone) structures have been improved by using a 3D fiber deposition (3DF) method. Two designs of 3DF scaffolds, with 45° and 90° layer rotation, were printed and compared with scaffolds produced by a salt-leaching method. The scaffolds had a porosity range from 64% to 82% and a high interconnectivity, measured by micro-computer tomography. The 3DF scaffolds had 8–9 times higher compressive stiffness and 3–5 times higher tensile stiffness than the salt-leached scaffolds. There was a distinct decrease in the molecular weight during printing as a consequence of the high temperature. The…
The requirement of a multifunctional scaffold for tissue engineering capable to offer at the same time tunable structural properties and bioactive interface is still unpaired. Here we present three-dimensional (3D) biodegradable polymeric (PCL) scaffolds with controlled morphology, macro-, micro-, and nano-mechanical performances endowed with bioactive moieties (RGD peptides) at the surface. Such result was obtained by a combination of rapid prototyping (e.g., 3D fiber deposition) and surface treatment approach (aminolysis followed by peptide coupling). By properly designing process conditions, a control over the mechanical and biological performances of the structure was achieved with a capability to tune the value of…
A basic approach toward the design of three-dimensional (3D) rapid prototyped magnetic scaffolds for hard-tissue regeneration has been proposed. In particular, 3D scaffolds consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) or iron-doped hydroxyapatite (FeHA) nanoparticles were fabricated through a 3D fibre deposition technique. As a first approach, a polymer to nanoparticle weight ratio of 90/10 (wt/wt) was used. The effect of the inclusion of both kinds of nanoparticles on the mechanical, magnetic, and biological performances of the scaffolds was studied. The inclusion of Fe3O4 and FeHA nanoparticles generally improves the modulus and the yield stress of the…
Magnetic scaffolds for bone tissue engineering based on a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) magnetic nanoparticles were designed and developed through a three-dimensional (3D) fiber-deposition technique. PCL/Fe3O4 scaffolds were characterized by a 90/10 w/w composition. Tensile and magnetic measurements were carried out, and nondestructive 3D imaging was performed through microcomputed tomography (Micro-CT). Furthermore, confocal analysis was undertaken to investigate human mesenchymal stem cell adhesion and spreading on the PCL/Fe3O4 nanocomposite fibers. The results suggest that nanoparticles mechanically reinforced the PCL matrix; the elastic modulus and the maximum stress increased about 10 and 30%, respectively. However, the maximum strain…
The demanding need for tissue replacement resulted in manifold approaches for the construction of different tissues. One common problem which hampers the clinical usage of tissue engineering constructs is a limited vascularization. In an attempt to accelerate the vascularization of tissue engineering constructs we compared the usage of bone marrow mesenchymal stem cells (bmMSCs) and fragments derived from the aorta in vivo. Tissue engineering constructs composed of PLGA scaffolds containing Matrigel (n = 8), aortic fragments embedded in Matrigel (n = 8), bmMSCs embedded in Matrigel (n = 8), and aortic fragments embedded in Matrigel combined with bmMSCs (n =…
The faith of tissue engineered bone replacing constructs depends on their early supply with oxygen and nutrients, and thus on a rapid vascularization. Although some models for direct observation of angiogenesis are described, none of them allows the observation of new vessel formation in desmal bone. Therefore, we developed a new chamber model suitable for quantitative in vivo assessment of the vascularization of bone substitutes by intravital fluorescence microscopy. In the parietal calvaria of 32 balb/c mice a critical size defect was set. Porous 3D-poly(L-lactide-co-glycolide) (PLGA)-blocks were inserted into 16 osseous defects (groups 3 and 4) while other 16 osseous…
Angiogenic and inflammatory responses to biodegradable scaffolds were previously studied using the dorsal skinfold chamber for testing different scaffold materials. In this model, the angiogenic response originates from the soft tissue of the skin. Herein, we introduce a new model that allows the study of developing microcirculation of bone defects for testing tissue-engineered constructs. A bone defect was prepared in the femur of Balb/c mice by inserting a pin for intramedullary fixation, and a custom-made observation window fixed over the defect allowed constant observation. This study included three different groups: empty defect (control), defect filled with porous poly(l-lactide-co-glycolide), and beta-tricalcium-phosphate…
Scaffolds produced by rapid prototyping (RP) techniques have proved their value for tissue engineering applications, due to their ability to produce predetermined forms and structures featuring fully interconnected pore architectures. Nevertheless, low cell seeding efficiency and non-uniform distribution of cells remain major limitations when using such types of scaffold. This can be mainly attributed to the inadequate pore architecture of scaffolds produced by RP and the limited efficiency of cell seeding techniques normally adopted. In this study we aimed at producing scaffolds with pore size gradients to enhance cell seeding efficiency and control the spatial organization of cells within the…
Parathyroid hormone-related protein (107-111) (osteostatin) induces osteogenic effects in osteoblasts in vitro and in regenerating bone in mice and rabbits. In this study we used osteoblastic MC3T3-E1 cell cultures to evaluate and compare the bioactivity of this peptide either adsorbed or covalently bound (by its C-terminus) to Si-doped hydroxyapatite (Si-HA) scaffolds after organic (-NH2) functionalization. By these means osteostatin can be locally released or kept anchored to the scaffold surface. This was confirmed by chemical analysis and by testing the efficiency of osteostatin-loaded Si-HA scaffolds (placed in Transwell chambers) in healing a scratch wound in mouse pluripotent mesenchymal C3H10T1/2 cells….
Herein we report for the first time the synthesis of three-dimensional scaffolds in the binary system SiO2–P2O5 exhibiting different scales of porosity: (i) highly ordered mesopores with diameters of ca. 4 nm; (ii) macropores with diameters in the 30–80 μm range with interconnections of ca. 2–4 and 8–9 μm; and (iii) ultra-large macropores of ca. 400 μm. The hierarchical porosity of the resulting scaffolds makes them suitable for bone tissue engineering applications. The chemical nature and mesoporosity of these matrices would allow these scaffolds to act as local controlled delivery systems of biologically active molecules, such as certain drugs to…
Scaffolds used in the field of tissue engineering should facilitate the adherence, spreading, and ingrowth of cells as well as prevent microbial adherence. For the first time, this study simultaneously deals with microbial and tissue cell adhesion to rapid prototyping-produced 3D-scaffolds. The cell growth of human osteosarcoma cells (CAL-72) over a time period of 3-11 days were examined on three scaffolds (PLGA, PLLA, PLLA-TCP) and compared to the adhesion of salivary microorganisms and representative germs of the oral flora (Porphyromonas gingivalis, Prevotella nigrescens, Candida albicans, Enterococcus faecalis, Streptococcus mutans, and Streptococcus sanguinis). Scanning electron microscopy (SEM), cell proliferation measurements, and…
The implantation of tissue-engineered constructs leads to hypoxic and physical stress to the seeded cells until they were reached by a functional microvascular system. Preconditioning of cells with heat shock induced heat shock proteins, which can support the cells to survive a subsequent episode of stress that would otherwise be lethal. Preconditioning of tissue-engineered constructs resulted in significantly higher number of surviving osteoblast-like cells (OLC). At the 6th and 10th day, angiogenic response was found comparative to poly(L-lactide-co-glycolide) (PLGA) scaffolds vitalized with either unconditioned or preconditioned OLC. However, they were significantly enhanced compared with the nonvitalized collagen-labeled PLGA scaffolds. This…
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to obtain oxygen and nutrients during tissue repair. With the aim to incorporate these desirable FGF biological properties into bioceramics for bone repair, silicon substituted hydroxyapatites (Si-HA) were used as materials to immobilize bioactive FGF-1 and FGF-2. Thus, the binding of these growth factors to powdered Si-HA and Si-HA scaffolds was carried out efficiently in the present study and both FGFs maintained its biological activity on osteoblasts after its immobilization. The improvement of cell…
Scaffolds should possess suitable properties to play their specific role. In this work, the potential of 3D fiber deposition technique to develop multifunctional and well‐defined magnetic poly(ε‐caprolactone)/iron oxide scaffolds has been highlighted, and the effect of iron oxide nanoparticles on the biological and mechanical performances has been assessed.
Background: Bone substitutes should ideally promote rapid vascularization, which could be accelerated if these substitutes were vitalized by autologous cells. Although adequate engraftment of porous poly(L-lactide-co-glycolide) (PLGA) scaffolds has been demonstrated in the past, it has not yet been investigated how vascularization is influenced by vitalization or, more precisely, by seeding PLGA scaffolds with osteoblast-like cells (OLCs). For this reason, we conducted an in vivo study to assess host angiogenic and inflammatory responses after the implantation of PLGA scaffolds vitalized with isogeneic OLCs. Materials and Methods: OLCs were seeded on collagen-coated PLGA scaffolds that were implanted into dorsal skinfold chambers…
Adequate vascularization of tissue-engineered constructs remains a major challenge in bone grafting. In view of this, we loaded ß-tricalcium-phosphate (ß-TCP) and porous poly(L-lactide-co-glycolide) (PLGA) scaffolds via collagen coating with vascular endothelial growth factor (VEGF) and studied whether the VEGF loading improves scaffold angiogenesis and vascularization. Dorsal skinfold chambers were implanted into 48 balb/c mice, which were assigned to 6 groups (n = 8 each). Uncoated (controls), collagen-coated, and additionally VEGF-loaded PLGA and ß-TCP scaffolds were inserted into the chambers. Angiogenesis, neovascularization, and leukocyte-endothelial cell interaction were analyzed repeatedly during a 14-day observation period using intravital fluorescence microscopy. Furthermore, VEGF release…
Spinal cord injury (SCI) represents a significant health and social problem, and therefore it is vital to develop novel strategies that can specifically target it. In this context, the objective of the present work was to develop a new range of three-dimensional (3D) tubular structures aimed at inducing the regeneration within SCI sites. Up to six different 3D tubular structures were initially developed by rapid prototyping: 3D bioplotting–based on a biodegradable blend of starch. These structures were then further complemented by injecting Gellan Gum, a polysaccharide-based hydrogel, in the central area of structures. The mechanical properties of these structures were…
The aim of this study was to develop 3-D tissue engineered constructs that mimic the in vivo conditions through a self-contained growth factor delivery system. A set of nanoparticles providing the release of BMP-2 initially followed by the release of BMP-7 were incorporated in poly(ε-caprolactone) scaffolds with different 3-D architectures produced by 3-D plotting and wet spinning. The release patterns were: each growth factor alone, simultaneous, and sequential. The orientation of the fibers did not have a significant effect on the kinetics of release of the model protein BSA; but affected proliferation of bone marrow mesenchymal stem cells. Cell proliferation…
3D porous Ti6Al4V scaffolds were directly fabricated by a rapid prototyping technology, 3D fiber deposition (3DF). In this study, scaffolds with different structures were fabricated by changing fiber spacing and fiber orientation. The influence of different architectures on mechanical properties and permeability of the scaffold were investigated. Mechanical analysis revealed that compressive strength and E-modulus increase with decreasing the porosity. Permeability measurements showed that not only the total porosity but also the porous structure can influence the permeability. 3DF was found to provide good control and reproducibility of the desired degree of porosity and the 3D structure. Results of this…
The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from…
Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 × 15 × 15 mm3. A composite of poly-ɛ-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400 μm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1 mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats,…
Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However, after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency, we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis, microhemodynamics, leukocyte–endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (l-lactide-co-glycolide) (PLGA) scaffolds (group 4), additionally seeded with osteoblast-like cells (OLCs, group 1), bone marrow mesenchymal stem cells (bmMSCs, group 2) or a combination of OLCs…
Designing a three-dimensional (3-D) ideal scaffold has been one of the main goals in biomaterials and tissue engineering, and various mechanical techniques have been applied to fabricate biomedical scaffolds used for soft and hard tissue regeneration. Scaffolds should be biodegradable and biocompatible, provide temporary support for cell growth to allow cell adhesion, and consist of a defined structure that can be formed into customized shapes by a computer-aided design system. This versatility in preparing scaffolds gives us the opportunity to use rapid prototyping devices to fabricate polymeric scaffolds. In this study, we fabricated polycaprolactone scaffolds with interconnecting pores using a…
Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology. To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 strokes min−1) and circulating flow perfusion (Q = 4 ml min−1; tR = 15 s) for up to 14 days. The materials were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and thin-film X-ray diffraction….
Fibrous structures mimicking the morphology of the natural extracellular matrix are considered promising scaffolds for tissue engineering. This work aims to develop a novel hierarchical starch-based scaffold. Such scaffolds were obtained by a combination of starch-polycaprolactone micro- and polycaprolactone nano-motifs, respectively produced by rapid prototyping (RP) and electrospinning techniques. Scanning electron microscopy (SEM) and micro-computed tomography analysis showed the successful fabrication of a multilayer scaffold composed of parallel aligned microfibres in a grid-like arrangement, intercalated by a mesh-like structure with randomly distributed nanofibres (NFM). Human osteoblast-like cells were dynamically seeded on the scaffolds, using spinner flasks, and cultured for 7…
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study, RP was used for the production of poly(ε-caprolactone) (PCL) scaffolds….
Tissue engineered scaffolds must have an organized and repeatable microstructure which enables cells to assemble in an ordered matrix that allows adequate nutriental perfusion. In this work, to evaluate the reciprocal cell interactions of endothelial and osteoblast-like cells, human osteoblast-like cells (MG63) and Human Umbilical Vein Endothelial Cells (HUVEC) were co-seeded onto 3D geometrically controlled porous poly(ε-caprolactone) (PCL) and cultured by means of a rotary cell culture system (RCCS-4DQ). In our dynamic co-culture system, the lack of significant enhancement of osteoblast ALP activity and ECM production indicated that the microgravity conditions of the rotary system affected the cells by favoring…
Scaffolds for tissue engineering of bone should mimic bone matrix and promote vascular ingrowth. Whether synthetic hydroxyapatite and acellular dentin, both materials composed from calcium phosphate, fulfill these material properties has not been studied yet. Therefore, we herein studied in vivo the host angiogenic and inflammatory response to these biomaterials. Porous scaffolds of hydroxyapatite and isogeneic acellular dentin were implanted into the dorsal skinfold chamber of balb/c mice. Additional animals received perforated implants of isogeneic calvarial bone displaying pores similar in size and structure to those of both scaffolds. Chambers of animals without implants served as controls. Angiogenesis and neovascularization…
In tissue engineering, rapid ingrowth of blood vessels into scaffolds is a major prerequisite for the survival of three-dimensional tissue constructs. In the present study, we investigated whether the vascularization of implanted poly-D,L-lactic-co-glycolic acid (PLGA) scaffolds may be accelerated by incorporation of Matrigel. For this purpose, we investigated in the aortic ring assay the proangiogenic properties of growth factor reduced Matrigel (GFRM) and growth factor containing Matrigel (GFCM), which were then incorporated into the pores of PLGA scaffolds. Subsequently, we analyzed vascularization, biocompatibility, and incorporation of these scaffolds during 14 days after implantation into dorsal skinfold chambers of balb/c mice…
Objective: We analyzed, in vivo, whether the establishment of blood supply to implanted scaffolds can be accelerated by inosculation of an in situ-preformed microvascular network with the host microvasculature. Background: A rapid vascularization is crucial for the survival of scaffold-based transplanted tissue constructs. Methods: Poly-lactic-glycolic acid scaffolds were implanted into the flank of balb/c or green fluorescent protein (GFP)-transgenic mice for 20 days to create in situ a new microvascular network within the scaffolds. The prevascularized scaffolds were then transferred into the dorsal skinfold chamber of isogeneic recipient mice. Nonvascularized poly-lactic-glycolic acid scaffolds served as controls. Vascularization, blood perfusion, and…
In this study, porous 3D fiber deposition titanium (3DFT) and 3DFT combined with porous biphasic calcium phosphate ceramic (3DFT+BCP) implants, both bare and 1 week cultured with autologous bone marrow stromal cells (BMSCs), were implanted intramuscularly and orthotopically in 10 goats. To assess the dynamics of bone formation over time, fluorochrome markers were administered at 3, 6 and 9 weeks and the animals were sacrificed at 12 weeks after implantation. New bone in the implants was investigated by histology and histomorphometry of non-decalcified sections. Intramuscularly, no bone formation was found in any of the 3DFT implants, while a very limited…
Reconstruction of bone defects in the field of craniomaxillofacial surgery is a relevant problem. In regenerative medicine, autologous bone is not available sufficiently. The full replacement of autologous bone grafts is required. A promising research field is the bone engineering. Especially the application of rapid prototyping (RP) enables new perspectives concerning the scaffold design. The aim of the study was to compare scaffolds produced by RP-technology (native and plasma-coated PLGA-scaffolds) with conventionally produced scaffolds (agar plates with hydroxyapatite and hyaluronic acid coated agar plates with hydroxyapatite) relating to proliferation, adhesion, and morphology of osteoblasts to get knowledge about the application…
3D fiber deposition is a technique that allows the development of metallic scaffolds with accurately controlled pore size, porosity and interconnecting pore size, which in turn permits a more precise investigation of the effect of structural properties on the in vivo behavior of biomaterials. This study analyzed the in vivo performance of titanium alloy scaffolds fabricated using 3D fiber deposition. The titanium alloy scaffolds with different structural properties, such as pore size, porosity and interconnecting pore size were implanted on the decorticated transverse processes of the posterior lumbar spine of 10 goats. Prior to implantation, implant structure and permeability were…
Three-dimensional (3D) fiber deposition (3DF), a rapid prototyping technology, was successfully directly applied to produce novel 3D porous Ti6Al4V scaffolds with fully interconnected porous networks and highly controllable porosity and pore size. A key feature of this technology is the 3D computer-controlled fiber depositing of Ti6Al4V slurry at room temperature to produce a scaffold, consisting of layers of directionally aligned Ti6Al4V fibers. In this study, the Ti6Al4V slurry was developed for the 3D fiber depositing process, and the parameters of 3D fiber depositing were optimized. The experimental results show how the parameters influence the structure of porous scaffold. The potential…
For tissue engineering, scaffolds should be biocompatible and promote neovascularization. Because little is known on those specific properties, we herein studied in vivo the host angiogenic and inflammatory response after implantation of commonly used scaffold materials. Porous poly(l-lactide-co-glycolide) (PLGA) and collagen–chitosan–hydroxyapatite hydrogel scaffolds were implanted into dorsal skinfold chambers of balb/c mice. Additional animals received cortical bone as an isogeneic, biological implant, while chambers of animals without implants served as controls. Angiogenesis and neovascularization as well as leukocyte–endothelial cell interaction and microvascular permeability were analyzed over 14 day using intravital fluorescence microscopy. PLGA scaffolds showed a slight increase in leukocyte…
In Tissue Engineering and bone reconstruction, alongside the choice of materials, the scaffold design is of great importance. Three dimensional structures not only permit the tuning of chemical and mechanical properties, but they can also copy the outer form of the required bone or cartilaginous structures. While new processes that create such 3D scaffolds by means of Rapid Prototyping have been developed, they are still restricted to a limited type of materials. At the Freiburger Materialforschungszentrum, our group has developed a new process called 3D BioplottingTM. Most kinds of polymers and biopolymers can be used for the fabrication of 3D…
Two important rapid-prototyping technologies (3D Printing and 3D Bioplotting) were compared with respect to the computer-aided design and free-form fabrication of biodegradable polyurethane scaffolds meeting the demands of tissue-engineering applications. Aliphatic polyurethanes were based on lysine ethyl ester diisocyanate and isophorone diisocyanate. Layer-by-layer construction of the scaffolds was performed by 3D Printing, that is, bonding together starch particles followed by infiltration and partial crosslinking of starch with lysine ethyl ester diisocyanate. Alternatively, the 3D Bioplotting process permitted three-dimensional dispensing and reactive processing of oligoetherurethanes derived from isophorone diisocyanate, oligoethylene oxide, and glycerol. The scaffolds were characterized with X-ray microtomography, scanning…