Present bioprinting techniques lack the methodology to print with bioactive materials that retain their biological functionalities. This constraint is due to the fact that extrusion-based printing of synthetic polymers is commonly performed at very high temperatures in order to achieve desired mechanical properties and printing resolutions. Consequently, current methodology prevents printing scaffolds embedded with bioactive molecules, such as growth factors. With the wide use of mesenchymal stem cells (MSCs) in regenerative medicine research, the integration of growth factors into 3D printed scaffolds is critical because it can allow for inducible MSC differentiation. We have successfully incorporated growth factors into extrusion…
The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3 to 5% of cases after ear tube placement as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year and…