Composites are promising candidates for treating bone defects, but manufacturing of composite scaffolds is challenging. This study aimed to fabricate composite scaffolds based on polycaprolactone (PCL) and doped Hydroxyapatite (HA) via a single step melt extrusion additive manufacturing technique. Starting from the raw powder forms, the printed scaffolds were produced and then characterized for morphology, mechanical behavior and in vitro mineralization. MicroCT revealed the homogenous dispersion of ceramic particles in the PCL matrix. Also, SEM showed the ceramic particles on the surfaces of printed scaffolds. Furthermore, bioactivity assays confirmed the enhanced apatite deposit formation on composite scaffolds compared to PCL…
Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells’ adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering….