Scaffolds play an important role in tissue engineering by providing structural framework and a surface for cells to attach, proliferate, and secrete extracellular matrix (ECM). In order to enable efficient tissue formation, delivering sufficient cells into the scaffold three-dimensional (3D) matrix using traditional static and dynamic seeding methods continues to be a critical challenge. In this study, we investigate a new cell delivery approach utilizing deposition of hydrogel-cell encapsulated microspheroids into polycaprolactone (PCL) scaffolds to improve the seeding efficiency. Three-dimensional-bioplotted PCL constructs (0 deg/90 deg lay down, 284 ± 6 μm strand width, and 555 ± 8 μm strand separation) inoculated with MG-63 model bone cells encapsulated within electrostatically generated calcium-alginate microspheroids (Ø 405 ± 13 μm) were evaluated over seven days in static culture. The microspheroids were observed to be uniformly distributed throughout the PCL scaffold cross section. Encapsulated cells remained viable within the constructs over the test interval with the highest proliferation noted at day 4. This study demonstrates the feasibility of the new approach and highlights the role and critical challenges to be addressed to successfully utilize 3D-bioprinting for microencapsulated cell delivery.