Currently, 3D printing is one of the popular technological production methods, mainly because it offers various options that affect the resulting properties of prints. The aim of the presented work is to manufacture a prosthetic finger with a PIP and DIP joint using multi-material 3D printing, which will allow to mimic the flexion of a physiological finger. The subject of this research and testing is the design of a combination of solid and flexible material for a monolithic finger model, which will allow the required bending in selected areas of the print.
Additive manufacturing has a great potential for creating hard tissue substitutes, such as bone and cartilage, or soft tissues, such as vascular and skin grafts. This study is a pilot study for 3D printing of a new material mixture potentially used as a tubular substitute for urethra replacement. This new mixture is a blend of polylactic acid (PLA) and polyhydroxybutyrate (PHB). The basic aspect that affects the 3D printing process is correct material preparation and setting of 3D printer parameters. Selection of material and printing parameters depend on printing technology. The printing technology affects material behavior during printing process. The…
Additive Manufacturing (AM) is a name of a group of technologies that build 3D objects by adding layer-upon-layer of material. There are many technologies, including Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication. Many types of materials can be used for AM technology. Biodegradable polymers such as polylactic acid (PLA) and polyhydroxybutyrate (PHB), are currently the subject of intensive research in the field of additive manufacturing and regenerative medicine. A number of biodegradable and bioresorbable materials, as well as scaffold designs, have been experimentally and clinically studied in many research facilities around the world. For effective…