Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning

Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning

Macromolecular Rapid Communications 2008 Volume29, Issue19, Pages 1577-1581

An ideal scaffold should have good mechanical properties and provide a biologically functional implant site. A rapid prototyping system has been introduced as a good method of fabricating 3D scaffolds that mimic the structure in the human body. However, the scaffolds have strands that are too smooth and a pore size that is too large relative to the seeded cells and present unfavorable conditions for initial cell attachment. To overcome these problems, we propose a hybrid technology combining a 3D rapid prototyping system and an electrospinning process to produce a hierarchical 3D biomedical scaffold. The resulting structure consists of alternating layers of 3D‐structured/microsized polymer strands and nanofiber webs. The results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high quality 3D polymeric scaffolds.